FLUID: Improving Throughputs in Enterprise WLANs through Flexible Channelization

Shravan Rayanchu, Vivek Shrivastava, Suman Banerjee University of Wisconsin Madison

Ranveer Chandra Microsoft Research

MobiCom 2011

Introduction

Channels in traditional 802.11 systems

These constraints are removed for *flexible channels*

Introduction

Flexible channels

Benefits: improved spectrum efficiency

Isolated, good quality link: wider width → higher throughput

 How do we assign flexible channels?

Assign widths based on demands at each AP

- Link conflicts depend on flexible channels used
 - Carrier sensing, interference
 - Hidden and exposed terminals

Internet

 How do we assign flexible channels?

Assig

How can we systematically model flexible channel conflicts?

- Link conflicts depend on flexible channels used
 - Carrier sensing, interference
 - Hidden and exposed terminals

Outline

- Understanding flexible channel conflicts
- Modeling flexible channel conflicts
- System for enterprise WLAN employing flexible channels
- Evaluation and summary

Total available spectrum = 40 MHz

Choice 2

40 / 40

20 / 20

T = 0.4

T = 1

Q. Can 20/20 be better than 40/40?

What happens when we reduce width?

What happens when we reduce width?

- If a total of 40 MHz is available, how should we assign it to two links?
 - 2 channel widths of 20 MHz and 40 MHz

Each configuration performed the best in some case

What about multiple links?

- Difference in power levels effects
 - Carrier sensing range

Channel Width	5 MHz	10 MHz	20 MHz	40 MHz
Carrier sense	28%	24%	19%	13%
(% links)				

Measurement on 600 link pairs, 802.11a

- Interference range
- Hidden and Exposed Terminals

What about multiple links?

- Difference in power levels effects
 - Carrier sensing range

Carrier sense	28%	24%	19%	13%

Need for systematically modeling flexible channel conflicts

k pairs, 802.11a

- Interierence range
- Hidden and Exposed Terminals

Problem Statement

Given

- Network with N nodes
- Total Bandwidth B MHz
- Flexible channels
 - Center frequencies
 - Channel widths

Problem Statement

Given

- Network with N nodes
- Total Bandwidth B MHz

How should we assign flexible channels to nodes?

Channel widths

B MHZ

Outline

Understanding flexible channel conflicts

- Modeling flexible channel conflicts
- System for enterprise WLAN employing flexible channels
- Evaluation and summary

How to build the conflict graph?

- Goal: for any given link and interferer, what is the expected link delivery ratio?
- Bandwidth tests (Fixed width channels)

Complexity: $O(N^2k^2)$ (naive) O(Nk) (SINR modeling)

How to build the conflict graph?

Variety of configurations are possible

Increased complexity:

k data rates, |w| widths \longrightarrow $O(N^2k^2 |w| 2^{|w|+1})$

How to build the conflict graph?

Varie

Reduce this to O(N.k) measurements

Increased complexity:

k data rates, |w| widths \longrightarrow $O(N^2k^2 |w| 2^{|w|+1})$

Expected delivery = ?

Measurements on 32 nodes, 802.11a

5 MHz profile

Signal Interpolation Model

Spectral Overlap Model

Delivery Model

$$SINR = S_t(w_t) - \left(S_i(w_i) + 10\log I_f\right) - N$$

Signal Spectral Overlap 5 MHz profile **Delivery Model** Interpolation Model Model Delivery = f(SINR) $SINR = S_t(w_t) - \left(S_i(w_i) + 10\log I_f\right) - N$

Modeling Conflicts

Signal Spectral Overlap Interpolation **Delivery Model** 5 MHz profile Model Model Delivery = f(SINR) $SINR = S_t(w_t) - \sum \left(S_i(w_i) + 10 \log I_f \right) - N$

Outline

- Understanding flexible channel conflicts
- Modeling flexible channel conflicts
- System for enterprise WLAN employing flexible channels
- Evaluation and summary

FLUID

- A system for enterprise WLANs employing flexible channelization
 - Models the flexible channel conflict graph

 Uses this conflict graph to mitigate interference

Flexible channels and FLUID

Channel assignment (e.g., LCCS, RaC)

Flexible Channel Conflicts Flexible channel assignment

Unscheduled

Conflict-aware scheduling (e.g., CENTAUR)

Scheduled

Joint flexible channel assignment and scheduling

FLUID

Outline

- Understanding flexible channel conflicts
- Modeling flexible channel conflicts
- System for enterprise WLAN employing flexible channels
- Evaluation and summary

1. How accurate is the model?

500 link – interferer combinations Min. freq separation for zero conflict?

1. How accurate is the model?

500 link – interferer combinations

500 link – interferer combinations

Accuracy of our model: 87.6%

Naïve model: 52%

- 2. What are the overall throughput gains?
- Throughput gains
 - DCF: (Fixed width, Flex-width)
 - -62% gains (average), up to 2.4 X
 - Scheduling/CENTAUR: [MobiCom'09]
 - -30% gains (average)

Results on a 23 node topology (8 APs, 15 Clients)

Summary

- Flexible channelization can be a useful tool for managing wireless interference
 - Requires careful consideration of conflicts
- We presented a model that can capture flexible channel conflicts
- We built a system that uses this model to improve the overall throughput in a WLAN

Thanks a lot! for your patience