





# Flooding-Resilient Broadcast Authentication for VANETs

Hsu-Chun Hsiao, Ahren Studer, Chen Chen, Adrian Perrig
Carnegie Mellon University
Fan Bai, Bhargav Bellur, Aravind Iyer
General Motors





# Vehicular Ad Hoc Network (VANET)

- Each vehicle possesses an On Board Unit (OBU)
  - Broadcasts info for safety & convenience







# **Broadcast Signatures**

- Secure wireless communication
  - 1. Origin authentication







- IEEE 1609.2 VANET security standard
  - Digitally signs every message using ECDSA algorithm





# Signature Flooding



- Expensive verification
  - − 22 ms to verify ECDSA signature on 400MHz processor
- Many messages may arrive in a short time period
  - Every vehicle broadcasts location every 100ms
  - Verify 50 neighbors' location = 1100% processing cycle
- ⇒Severely limits effectiveness of VANET applications

Can we reduce overhead of VANET verification?





#### Outline

- Introduction
- Core idea: entropy-aware authentication
- Proposed flooding-resilient schemes
  - FastAuth secures single-hop periodic messages
  - SelAuth secures multi-hop messages
- Related Work
- Conclusion





# **Entropy-Aware Authentication**

Scheme's overhead should match the entropy of broadcast messages

- FastAuth exploits predictability of future messages
  - Replaces expensive ECDSA sigs with efficient hash ops
- SelAuth selective verification before forwarding
  - Avoid checking sigs with high certainty of validity





# FastAuth: First Attempt

Verifying location updates sent at 10Hz rate

• Lightweight hash operation (1us) instead of expensive ECDSA verification (22ms)



4. Verification









# **Location Uncertainty**



Unfortunately... incorrect prediction requires re-prediction



Challenge: commit all possible movements into ACKs





#### 1. Location Prediction

- Sender predicts it own movements
- Narrow down possible movements for efficiency
  - Sender's speed limits
    - e.g., slower than 180km or 112mile per hr → cannot move > 5m per 0.1s
  - Sender's location measurement accuracy



| Possible Movement In 0.1s $(L_{i+1} - L_i)$ |  |  |
|---------------------------------------------|--|--|
| Stay (D <sub>S</sub> )                      |  |  |
| Forward (D <sub>F</sub> )                   |  |  |
| Forward left (D <sub>L</sub> )              |  |  |
| Forward right (D <sub>R</sub> )             |  |  |
|                                             |  |  |
|                                             |  |  |
|                                             |  |  |





### 2. Verifiable ACK Construction

#### **Possible Movement**

 $(L_i - L_{i-1})$ 

Stay (D<sub>S</sub>)

Forward (D<sub>F</sub>)

Forward left (D<sub>L</sub>)

Forward right (D<sub>R</sub>)

 $\mathsf{I}$  : Hash function H

: public value

: ACK of location Li

: ECDSA signature







# 3. Signed Location Broadcast



Movement committed to ACK tree => No re-prediction needed!





## 4. Verification

#### **Sender**



#### **Receiver** Verify ECDSA sig





Compute P' Verify if P = P' $L_1 = L_0 + D_F$ 



Compute  $A_2$ '
Verify if  $A_2$ ' =  $A_2$   $L_2 = L_1 + D_L$ 







# Further Improvement

- We have reduced verification overhead
  - Expensive sig verification => lightweight hash ops
- Can we also reduce comm. overhead?
  - Yes. Not fully leveraged location predictability yet

| Possible Movement $(L_i - L_{i-1})$ | Probability |
|-------------------------------------|-------------|
| Stay (Ds)                           | ?           |
| Forward (Df)                        | ?           |
| Forward left (DI)                   | ?           |
| Forward right (Dr)                  | ?           |





### Huffman Tree + Hash Tree

| Possible Movement $(L_i - L_{i-1})$ | Probability    |
|-------------------------------------|----------------|
| Stay (D <sub>S</sub> )              | Ps             |
| Forward (D <sub>F</sub> )           | P <sub>F</sub> |
| Forward left (D <sub>L</sub> )      | $P_L$          |
| Forward right (D <sub>R</sub> )     | $P_R$          |



Re-arrange based on probability (Huffman encoding)









## **Reduced Communication**







#### Discussion

- Tradeoffs
  - Pros: instant verification, low comp. & low comm.
  - Cons: low update frequency
- Low update frequency due to verification dependency
  - Missing msg prevents verification of subsequent msgs
- To increase update frequency
  - Error correction codes to mitigate packet loss
  - Occasionally sign messages using ECDSA signatures





# FastAuth: Evaluation Settings

Does FastAuth mitigate Signature Flooding?

- Evaluate receiver's & sender's computational overhead
- Data collection
  - 4 traces, each by driving along a 2-mile path for 2 hours
- Additional evaluation metrics
  - Communication, update frequency
- Impacting factors
  - 1. Is FastAuth sensitive to *prediction accuracy?*
  - 2. How does packet loss affect FastAuth?





# FastAuth: Computation









#### Outline

- Introduction
- Core idea: entropy-aware authentication
- Proposed flooding-resilient schemes
  - FastAuth secures single-hop periodic messages
  - SelAuth secures multi-hop messages
- Related Work
- Conclusion





#### SelAuth Overview

- SelAuth is about
  - Finds balance between Verify-on-Demand & Verify-All
  - Promptly isolates malicious parties
    - Invalid sigs cannot spread out consuming comm. bandwidth
  - Quickly adjusts P<sub>xy</sub> s.t.
    - Pxy = Pr[y verifies signatures forwarded by x]
    - Pxy  $\rightarrow$  0 for benign x & Pxy  $\rightarrow$  1 for malicious x







## Fast Isolation of Mobile Attacker



One verification prob. for all neighbors

One verification prob. for all neighbors + Pushback warning

Per-neighbor verification prob.

#### **SelAuth**

Per-neighbor verification prob. + Pushback warning

Verify every signature with p = 1





## SelAuth: Low Overhead

NS-2 simulation: 336 vehicles in 1kmx1km downtown Manhattan







#### Related Work

- Efficient broadcast authentication
  - Avoid expensive asymmetric cryptographic ops
    - Use symmetric crypto instead
      - One-time signatures: [Lamport, Merkle, Gennaro & Rohatgi]
      - One-way hash chains: [Perrig et al., Hu et al., Studer et al.]
    - Less crypto work when threat level is low
      - [Gunter et al., Khanna et al., Wang et al., Ristanovic et al., Li et al.]





#### Conclusion

- Flooding-resilient broadcast signatures
  - Required for timely verification of safety messages
  - Unachievable in current standard even in benign settings
- Entropy-aware authentication to mitigate flooding
  - FastAuth: instant verification for one-hop messages
    - Leverages message predictability
    - 50x faster computation compared to current standard
  - SelAuth: selective authentication for multi-hop messages
    - Enables fast isolation of malicious senders
    - 15%-30% computational overhead