Extending Mobile Interaction Through Near-Field Visible Light Sensing

Chi Zhang, Joshua Tabor, Jialiang Zhang and Xinyu Zhang
{czhang296,jtabor,jzhang625}@wisc.edu, xyzhang@ece.wisc.edu
Department of Electrical and Computer Engineering
University of Wisconsin-Madison

ABSTRACT
Mobile devices are shrinking their form factors for portability, but user-mobile interaction is becoming increasingly challenging. In this paper, we propose a novel system called Okuli to meet this challenge. Okuli is a compact, low-cost system that can augment a mobile device and extend its interaction workspace to any nearby surface area. Okuli piggybacks on visible light communication modules, and uses a low-power LED and two light sensors to locate user’s finger within the workspace. It is built on a light propagation/reflection model that achieves around one-centimeter location precision, with zero run-time training overhead. We have prototyped Okuli as an Android peripheral, with a 3D-printed shroud to host the LED and light sensors. Our experiments demonstrate Okuli’s accuracy, stability, energy efficiency, as well as its potential in serving virtual keyboard and trackpad applications.

Categories and Subject Descriptors
H.5.2 [INFORMATION INTERFACES AND PRESENTATION]: User Interfaces—Input devices and strategies

Keywords
Mobile human computer interaction; visible light sensing; visible light channel modeling; wearable computing

1. INTRODUCTION

Touch has been a de facto mode of input for modern mobile devices like smartphones. Despite its popularity, it carries a number of inherent limitations. Interacting with touchscreens can lead to fingers occluding valuable screen real estate, which is especially cumbersome for real-time applications such as gaming. The problem is being exacerbated given a continued trend for ever-smaller devices. For emerging wearable computing devices, e.g., smart watches, touch input becomes virtually infeasible.

Alternative mobile interaction technologies have been explored to unleash user’s finger/hand from the screen. RF-IDraw [1] and PhonePoint [2] use RFID or motion sensors to track hand trajectory, creating opportunities for writing in the air. These approaches can achieve sub-meter scale tracking accuracy, but require instrumenting the hand with additional devices. Vision-based input detection systems [3, 4] achieve finer granularity, by projecting a keyboard or trackpad and extracting user’s finger movement with image processing. Yet the need for bulky cameras/projectors compromises portability. UbiK and TapSense [5, 6] piggyback on ambient objects’ surface to create a virtual trackpad/keyboard, yet their touching and keystroke identification algorithms rely on tedious run-time training.

Inspired by the emerging visible light communication (VLC) technology [7, 8], we propose Okuli, a novel system that moves interaction off the display and into nearby field around a mobile device. Recent VLC systems have demonstrated capabilities to localize active objects instrumented with light sensors [9, 10]. In contrast, Okuli enables a VLC-capable mobile device to sense passive object, in particular, user’s single-finger input. The mobile device uses an LED transmitter to project a light beam towards the finger, and uses photodetectors (PDs) to sense the reflected light intensity, thus localizing the finger position. Okuli affords two immediate interactions for small mobile devices: (i) A virtual trackpad that tracks a user’s finger, enabling hand-writing based input for smart watches or smartphones with a small display area. (ii) A ubiquitous text-entry system that locates user’s finger click on a virtual keyboard, e.g., one printed on a flat surface or a piece of paper [5].

In contrast to prior fine-grained input sensing systems that learn location-dependent acoustic/RF signal features [5], Okuli adopts a model-driven framework for finger positioning, which is free of run-time training overhead. Okuli achieves this based on two empirical principles originating from physical properties of the visible-light channel. (i) Unlike the well-known infrared-based proximity sensing technology that detects “beam cutting” activities [11], Okuli harnesses the non-linear propagation/attenuation effect of light signals, enabling a large input canvas and richer localization information than a binary “presence or absence”. (ii) Unlike acoustic/RF signals, light propagation bears a more deterministic model, yet this also implies more spatial ambiguity. Okuli thus employs two light sensors to discriminate finger locations that reflect similar light intensity.

Despite its simplicity in principle, Okuli faces a number of key challenges in meeting centimeter-level localization granularity in its anticipated application scenarios. In particular, although light attenuation follows well-defined model in free-space, reflection on irregular-shaped finger, together with irregular LED/PD angular gain patterns, incurs substantial uncertainties. To enable robust finger positioning, Okuli grooms the light by reshaping the LED/PD’s field-of-view (FoV) with a shroud. It then executes a 3-point initial calibration, based on which it models/predicts the expected light intensity perceived by each PD, when the finger is touching an arbitrary location on the canvas. Okuli’s light grooming also enables it to accurately detect finger touching/clicking events.
Okuli consists of 1 light source and 2 light sensors. The light source is an LED, and sensors are photodetectors (PDs) whose output increases linearly with input light intensity. The LED is centered between the 2 PDs which are typically separated well below 10cm so as to be fitted into the edge of a mobile device. We refer to the straight line between the two PDs as Okuli’s front face.

Okuli uses the region in front of this line as the workspace. The workspace’s coordinate system uses the center-point between two PDs as the origin, and its x-axis is parallel to Okuli’s front face. Finger position within the workspace is denoted with (x, y). The LED can be placed slightly in front of the front face if desired. In the rest of this paper, we denote the distance between the origin and each PD as d_{SENSE}, and that between the origin and the LED as d_{LED}. The distances between the finger and the LED, left and right PD are denoted by d_l, d_{ll}, and d_{rr}, respectively.

Usage conditions. Since Okuli uses a light propagation/reflection model for finger localization, its accuracy highly relies on the accuracy of the modeling parameters. However, Okuli will perform consistently as long as the following conditions are satisfied: (i) The reflectivity of user’s finger does not change significantly over time. (ii) User maintains a relatively consistent usage habit (e.g., same finger), and the hand/wrist does not touch the working surface, just like when using a touchscreen. (iii) The workspace stays on the same surface with a consistent reflectivity.

From our user study, we found that these conditions are naturally met in Okuli’s targeted application scenarios, and users naturally maintain the consistency needed. When the usage conditions are violated, Okuli requires the user to input 3 anchoring points to recalibrate the modeling parameters (Section 4.3).

Design goals and challenges. Okuli needs to achieve the following goals in order to facilitate mobile interaction:

(i) Fine-grained, model based finger localization: Okuli aims for model-driven localization with around one-centimeter accuracy (around the size of a key on a keyboard), and without a fingerprinting-like training procedure. It needs to account for all factors that can affect the light intensity reflected by the finger into the PDs. These include not only finger-to-PD distance, but also the LED/PDs’ angular response, finger reflectivity, etc.

(ii) Robustness: Okuli’s model should be stable over time. In addition, since Okuli uses visible light to locate the finger, two kinds of visible light sources may interfere our system: (a) Ambient light such as fluorescent lamp and sunlight; (b) Reflection from the background object other than the finger. The first type of interference could be easily canceled due to its stability, but the second type imposes challenges since it is “coherent” with the finger reflection and may be dynamic.
within its working space. If the light sensing is not carefully con-

When the finger is located at an arbitrary point within the workspace.
The model then builds a lookup table that predicts sensor output

values, which result from reflections upon nearby objects such as

PDs. By constraining the FOV of the PDs, Okuli only views a small

slice of the user’s finger, plus a limited amount of interference.

FOV helps reduce background and ambient light interference by

the horizontal FOV creates a wide workspace, and the narrow vertical

latter can saturate Okuli’s PDs and, if the ambient light is dynamic,

flections from user’s hand, arm or other objects close to Okuli. The

opportunistically updates the estimation of dynamic background

and ambient light interference. The former can be attributed to re-

trolled, Okuli can become very susceptible to background reflections

3.1 Field-of-View (FOV) Consideration for

Visible Light Sensing

Okuli uses a visible light source and dual PDs to locate a finger

within its working space. If the light sensing is not carefully con-

trolled, Okuli can become very susceptible to background reflections

and ambient light interference. The former can be attributed to re-

flections from user’s hand, arm or other objects close to Okuli. The

latter can saturate Okuli’s PDs and, if the ambient light is dynamic,

can lead to false detections.

To alleviate these problems, Okuli should ideally use PDs with a

very wide horizontal FOV and a very narrow vertical FOV. The wide

horizontal FOV creates a wide workspace, and the narrow vertical

FOV helps reduce background and ambient light interference by

limiting the amount of objects capable of reflecting light into Okuli’s

PDs. By constraining the FOV of the PDs, Okuli only views a small

slice of the user’s finger, plus a limited amount of interference.

FOV can be shaped through custom-built PDs or lenses, which

can be made extremely small and fit comfortably on the side of a

smartphone or smart watch. Figure 3 shows an example of how

Okuli could look in an actual product-level implementation.

3.2 A 3D Printed Shroud for Light Grooming

Since there exist no PDs with the required FOV characteristics on

the market, a shroud is 3D printed to hold the PDs and discipline

their FOV. Figure 4 shows a CAD drawing of the shroud. We have

printed the shroud on a Dimension Elite 3D printer using ABS

thermoplastic painted in black.

The PDs’ vertical FOV is limited by the slits on the left and right

side of the shroud. The light source, an LED, sits in the center of the

shroud and is blocked from the PDs to prevent light-of-sight leakage.
The shroud is painted black to prevent complicated reflections and to

reduce the impact of ambient light diffusion/interference. It allows

the PDs to be mounted in different positions. Such extra flexibility

make the prototype larger than what would be necessary in a product

version.

Figure 5 and Figure 6 show the horizontal/vertical angular re-

sponses of a PD, with and without the shroud. We observe that the

shroud grooms the vertical FOV into a super-narrow, non-divergent

beam, while forcing the horizontal FOV within 90°. Thus, it

achieves the same effect as an ideal PD for Okuli.

We also observe that the shroud helps alleviate the impact of

background reflection from the user’s hand. As shown in Figure 7,

without the shroud, the received light intensity shows large variation

with the same finger position but different hand postures. The

shroud significantly reduces such variation and enables stable finger-

localization.

4. MODELING NEAR-FIELD LIGHT REFLE-

CTION

To achieve localization, Okuli uses a model to estimate the inten-

sity of reflected light when a finger is placed at a specific coordinate

within the workspace.

Light emitted by the LED is subject to 4 processes before reach-

ing the PD: emission, propagation, reflection and reception, which

correspond to 4 attrition factors: LED’s angular response; pathloss

between LED, finger and PDs; reflectivity of finger; and finally,

PD’s angular response. The final light intensity sensed by the PD is

a multiplication of the 4 attribution factors. We model the attribution

factors in three parts: a finger response estimator, a free-space path

loss estimator and parameter calibration, respectively.

For a given finger position \((x, y)\), the finger response estimator

(Section 4.1) estimates the percentage of light reflected by the finger.
The LED and PD are at different angles for different \((x, y)\) coor-

dinates, resulting in different amounts of light being reflected and

received.

The free-space loss estimator (Section 4.2) estimates the light’s

attenuation as it traverses the illuminating path and reflecting path.

Finally, the parameter calibration mechanism (Section 4.3) ac-

quires hardware and user-specific attrition factors. Through a one-

time measurement, it obtains normalized angular responses of the

LED and PDs, which vary from advertised ones, and can be changed

radically after light grooming. In addition, a constant \(C_X (X \in \{L, R\})\)

for left/right PD is used to capture other parameters, e.g.,

the reflectivity of the finger and the coefficients for the real gain of

the LED and PD. We emphasize that the calibration procedure only

needs to be conducted at factory-production stage, and when Okuli

serves a new user or new workspace.

4.1 Finger Response Estimator

Okuli uses a finger response estimator to model the amount of light

reflected from a user’s finger. There are two major factors that
shape the finger response. First, the finger receives and reflects light in different angles at different locations, which can lead to different overall reflectivity. Second, the distance between user’s finger and Okuli’s front face determines how much of the finger can be seen by Okuli, and hence how much light is reflected. Accordingly, the finger response estimator comprises two essential coefficients: the reflection coefficient and the visible height coefficient.

4.1.1 Modeling the Reflection Coefficient

The reflection coefficient models how the finger “bends” incoming light. It can be represented as:

$$C_r = \frac{\text{Light Reflected towards PD}}{\text{Light Reflected in All Directions}}$$

where C_r is a user-related constant that represents skin’s reflectivity and is calculated during calibration (Section 4.3). The remainder fraction term falls in the range $[0, 1]$, representing the percentage of the light arriving at the finger that is reflected on to the PD.

As illustrated in Figure 8, this fraction term is determined by incident and reflecting angles. It can be modeled using a function $R_X(\theta_i, \theta_{IX})$, where θ_i denotes the angle between the incidental and reflecting light directions, and $\theta_{IX}(X \in \{L, R\})$ the angle between the reflection direction to left/right PD and the horizontal plane (parallel to Okuli’s front face). For each finger location (x, y), θ_i can be calculated by simple geometry based on Okuli’s setup (Figure 1, where $x_{LED} = 0$, $y_{LED} = d_{LED}$, $x_{PDX} = \pm d_{SENSE}$ and $y_{PDX} = 0$):

$$\theta_i = \arctan\left(\frac{y - y_{LED}}{x - x_{LED}}\right)$$

Similarly, θ_{IX} can be calculated as:

$$\theta_{IX} = \arctan\left(\frac{y - y_{PDX}}{x - x_{PDX}}\right)$$

4.1.2 Visible Height Coefficient

The visible height coefficient estimates the total vertical height visible to both the LED and the PD. Since the LED’s vertical FOV is much larger than the one of the shroud and thus relatively unrestricted, the PD’s FOV in the shroud is the sole factor in determining this coefficient, which compensates for the fact that more of the user’s finger is visible the further it is away from the PD, so more light can be reflected from the finger towards the PD.

Figure 9 illustrates the derivation of the visible height coefficient. In the bottom left of Figure 9, r represents the distance between the PD and the opening of the shroud, and h is the height of the opening. $d_{IX}(X \in \{L, R\})$ denote the distance from the finger to left and right PD, respectively. The inner blue triangle and the outer red triangle are similar, so a simple proportion can model the visible height coefficient in terms of d_{IX}, r and h:

$$H(d_{IX}) = \frac{d_{IX} \cdot r}{h}$$
Note that r changes with the angle θ_{X}; as shown in the bottom right of Figure 9, for a finger position near the edge of the PD’s FOV, corresponding $r' = \frac{r}{\cos \theta_{X}}$, which changes Equation (5) to be:

$$H(d_{X}) = \frac{d_{X} \cdot r}{h} \quad (6)$$

However, since this change only affects the overall angular response of the PD, it will also be accounted for during calibration. So the simpler Equation (5) suffices, i.e., r and h can be considered as constant parameters.

4.1.3 Assumptions in the Finger Response Estimator

We have made two assumptions in the finger response estimator to simply the model. First, the reflection coefficient is accurate only if the finger is relatively round, as the reflection coefficient assumes a circular cross-section. Second, it is assumed that the finger is a good diffuser of light.

To verify the first approximation, we place a finger vertically in front of Okuli, and measure the RSS as the finger rotates. If the finger were a perfectly round, uniform reflector, the RSS would change very little with the rotation. Figure 7 shows how little RSS changes as the user rotates finger (and hand) within ±90°. In practical usage scenarios, a user will rarely rotate finger beyond this range. So the round-finger assumption can be used without a considerable loss in accuracy.

In addition, the visible height coefficient assumes the finger is a diffusive reflector, and hence the visible height grows with distance. If the finger instead creates specular reflection, none of its surface area above the light source would reflect light into the PD, resulting in a constant height. Figure 10 shows the finger part lit by a camera in a dark room. The finger is evenly colored, which testifies to the diffusional effect. Assuming fingers are perfect diffusers adds some small inaccuracies, but it also greatly simplifies the model.

4.2 Free-Space Path Loss Estimator

The second component of Okuli’s modeling framework is the free-space loss estimator, which estimates the light intensity attenuation due to traveling through free-space. The free-space loss along the illuminating path follows the inverse-square law for visible light propagation [12]. We denote this loss as g_{t} and the distance between the LED and user’s finger as d_{t}, then we have $g_{t} = 1/d_{t}^{2}$.

On the other hand, we denote the reflection path from the finger to the PD as g_{AX}, $X = L$ and R for left and right PD, respectively. This path involves a more sophisticated model that needs to account for the increasing amount of finger surface area visible to the PD as the finger moves farther. Taking into account this phenomenon along with the finger response estimator and the inverse-square law, we can derive the reflection pathloss as:

$$g_{AX} = \frac{R(\theta_{X}, \theta_{AX}) \cdot H(d_{X})}{d_{AX}^{2}} = \frac{\frac{1}{2}[1 + \cos(\theta_{X} - \theta_{AX})]}{d_{AX}^{2}} \cdot C_{r} \cdot \frac{r}{h}$$

$$= \frac{[1 + \cos(\theta_{X} - \theta_{AX})]}{2d_{AX} \cdot h} \cdot C_{r} \cdot r \quad (7)$$

From Equation (7), it is clear that the reflection pathloss follows an inverse-linear law instead of the common inverse-square law, due to change in the finger’s visible height.

4.3 Model Calibration

Finally, to conduct the model calibration, we first merge hardware-related parameters (e.g., the output power of LED), user-related parameters (e.g., variation in finger reflectivity caused by different skin color), and workspace-related parameters (e.g., surface reflectivity), together into a constant, which we denote as $C_{X}(X \in \{L, R\})$ for each PD. Also, we denote the signal output of each PD as $RSS_{X}(X \in \{L, R\})$, beam shape (angular response) of the LED as $S_{LED}(\theta_{t})$, and angular response of the sensor as $S_{PDX}(\theta_{AX})(X \in \{L, R\})$. Following our discussion in the beginning of Section 4, the final model can be expressed as:

$$RSS_{L} = C_{L} \cdot g_{t} \cdot g_{AX} \cdot S_{PDX}(\theta_{AX}) \cdot S_{LED}(\theta_{t}) \quad (8)$$

$$RSS_{R} = C_{R} \cdot g_{t} \cdot g_{AX} \cdot S_{PDX}(\theta_{AX}) \cdot S_{LED}(\theta_{t}) \quad (9)$$

Equations (8) and (9) involve parameters that need calibration before being used to estimate the expected RSS’s at different locations. The calibration follows two stages.

The first stage consists of experimentally determining the angular responses of both the LED (i.e., $S_{LED}(\theta_{t})$) and the PD (i.e., $S_{PDX}(\theta_{AX})$, $X \in \{L, R\}$) after they are mounted in the shroud. To obtain the LED response, we simply point a PD towards it, rotate the PD along a half-circle while measuring the RSS at different angles. To obtain the PD response, we use LED to do the measurement in a reciprocal way. This is a one-time factory calibration procedure, and is necessary for two reasons: the manufacturer-reported angular response does not match the actual device very well, which can be clearly seen from the irregular response curve of the PD before applying the shroud (Figure 5); also, the shroud significantly changes the responses of both the LED and the PD.

Given the angular responses, we proceed to the second stage. Since we model the reflection light intensity as the transmitted light intensity $S_{LED}(\theta_{t})$ multiplied by a chain of attrition factors, we can extract all the user-related and workspace-related constants and multiply them into a single factor, which is represented in the aforementioned constant C_{X}. The calibration fits 3 sample inputs from the user in order to obtain the parameter C_{X}. While the user inputs samples for 3 known anchoring points within the workspace, RSS values are taken from each PD, and the constant C_{X} is calculated for each point by plugging in the measured RSS values into Equations (8) and (9) to solve for C_{X}. To avoid biasing the model to recognize one point better than the others, the averaged C_{X} value across the 3 anchoring points is used. If the user misplaces her finger or otherwise completes calibration incorrectly, a sanity check of the calibration points is done by taking standard deviation of the individual C_{X} values. If the standard deviation is higher than an empirical threshold, then the user is asked to reinitiate the calibration.

The resulting C_{X} accounts for the shape and reflectivity of each user’s finger, the gain and aging of the LED and PD, and the reflectivity of the surface Okuli is placed on. Therefore, Okuli needs to be recalibrated when placed on a new surface, or used by a different person.

5. FINGER POSITIONING

In this section, we introduce how Okuli incorporates the above model to establish a practical finger localization framework. Specific-
5.1 Canceling Ambient Light Interference

In practical usage scenarios, Okuli may be subject to a variety of ambient interferences, which can be broadly classified into ambient light interference and irrelevant background reflection. This section tackles the former.

Okuli uses a simple cancellation mechanism to suppress interference from ambient light sources such as sunlight and indoor fluorescent/LED lights. It modulates the LED’s light emission using periodic On-Off-Keying (OOK), with a switching rate of around 30Hz — much higher than the typical variation rate of ambient light sources. During the ON period, Okuli’s PD takes one RSS sample that contains both the desired signal and ambient light interference, and subtracts the sample from previous OFF period, which only contains the ambient light intensity. Thus, light intensity contributed by ambient light is removed from the measured value.

We note that the ambient light cancellation mechanism may not work under extreme conditions, such as direct sunlight, where ambient light can easily saturate the ADC. An analog subtracter built with multiplexers and operational amplifiers, which are synchronized with the modulation, might overcome this challenge. We leave the exploration of such schemes for future work.

5.2 Dynamic Background Removal

In addition to ambient light interference, it is also possible that there exist interferences “coherent” to Okuli’s modulated light, interferences that are emitted during the on period and dark during the off period. Any secondary sources of reflection other than the target finger can cause such interference. Examples include reflection from user’s body parts/clothes, the working surface, people walking by, and even self-interference due to insufficient isolation between the LED and the PD. We colloquially refer to these interferences as ambient interferences, which can be broadly classified into ambient light interference and irrelevant background reflection. This section tackles the former.

The algorithm to remove the background interference, we can assume that the background does not change very quickly (within a few sampling periods of the PD), and Okuli can keep track of the background readings when the finger is absent from the workspace. Then, Okuli can subtract the latest measurement of background interference from the measured RSS values. We call this approach dynamic background removal (DBR). The approach requires two essential mechanisms: finger presence detection and background estimation.

Finger presence detection. To realize DBR, we need to identify the presence of finger and classify each RSS reading into 2 classes: foreground and background. We use the Temporal Background Modeling (TBM) in [13] for the classification. The TBM was originally borrowed from computer vision and image processing, to help identify and remove slow-changing background from signal. It uses a Gaussian kernel and a set of parameters to determine how likely a certain sample is the background. For image processing, either a decrease or an increase of values can be considered as a foreground event. However, for Okuli, only an increasing RSS can indicate a finger-presence event in the foreground. Thus, we added an exponential term to the Gaussian kernel in TBM to penalize classifying reducing RSS as foreground.

We design the DBR in conjunction with finger-touch detection, as shown in the work flow in Figure 11. It has 4 states: INIT (initialization), BACKGROUND, ENTERING and KEYDOWN. During initialization, a circular buffer is filled with a certain amount of samples. In the background state, after each sample update, TBM1, which favors background assertions is run first. If its output indicates a likely background presence, a second TBM2, which is stricter and favors non-background assertions, is executed. If the outcome still indicates high likelihood of background presence, then the background value is updated.

Meanwhile, if TBM1 indicates a non-background situation, the state will be switched to ENTERING. During this state, the finger is supposed to be on its way to touch the working surface, which generates a large standard deviation relative to the mean value. Thereafter, touch occurs, moving the system into the KEYDOWN state.

Background estimation. Okuli opportunistically switches back to the BACKGROUND state, and updates the background value, whenever the finger leaves the surface. We expect that a finger staying on the working surface for an extended time will be rare. Thus, Okuli should be able to update the background value in a timely way.

5.3 Spatial Ambiguity and System Dimensioning

Eliminating spatial ambiguity. The basic principle of Okuli’s localization mechanism is to map a given light intensity measurement into finger location, based on the aforementioned light propagation/reflection model. Note that a single pair of LED/PD is insufficient for location discrimination as there exist many finger spots with the same reflecting light intensity. Okuli eliminates such spatial ambiguity with two PDs.

Figure 12 shows a contour plot of spatial distribution of the RSS, for left and right PD (separated by 2.5 cm), respectively, under an example setup. The contours are generated using the aforementioned model, with parameters calibrated in our real Okuli prototype. We can see that any curve from the left PD has only one intersection with any curve from the right PD. Therefore, any location (x, y) can be mapped to a unique pair of RSS values, and hence, two PDs...
plus one LED are sufficient to discriminate locations on Okuli’s 2-D workspace. In general, suppose the PDs’ angular responses are homogeneous and close to half-circle, it can be proven using simple geometry that this one-to-one mapping strictly holds [14]. Practical angular responses may deviate from half-circle. However, we conjecture that as long as they are convex and homogeneous, spatial ambiguity can be eliminated given two appropriately separated PDs. We leave the proof for the conjecture as future work.

Location matching. To map the measured RSS pair to location, we note that the RSS pair \((R_{xy}, R_{xy}')\) provided by model (Equations (8) and (9)) does not have a closed form, and hence it is impossible to directly inverse the RSS to location. So we use a location matching mechanism instead. We first use the model to compute a look-up table that maps every location spot on a \(1\)mm \(\times\) \(1\)mm grid into an RSS pair. At run-time, Okuli can look for the RSS pair that matches closely with its measured one, and then reverse it to a location spot. The error metric for matching can be either Euclidean distance or Manhattan distance.

The foregoing discussion on spatial ambiguity assumes Okuli’s model is perfect. In practice, Okuli’s location precision depends on the separation between the target location spots, and also the separation between the LED and PD. We now analyze how such dimensioning parameters affect Okuli’s performance.

Error tolerance for a given separation between spots. For a given location \((x, y)\), based on Equations (8) and (9), we can obtain the expected RSS of left and right PD, denoted by \(L_{xy}\) and \(R_{xy}\). Since all factors in Equations (8) and (9) are multiplicative, we assume the errors in modeling \(L_{xy}\) and \(R_{xy}\) are multiplicative Gaussian variables with zero mean and variance \(\sigma^2\). We denote the two variables as \(N_L\) and \(N_R\), respectively. Further, we denote \(L_{xy}'\) and \(R_{xy}'\) as the actual RSS of left and right PD with modeling error for a given finger location \((x, y)\). Then we have

\[
L_{xy}' = (1 + N_L) L_{xy}
\]

\[
R_{xy}' = (1 + N_R) R_{xy}
\]

We use normalized Euclidean distance as the modeling error metric, denoted as \(RSS_e\):

\[
RSS_e = \sqrt{\frac{(L_{xy}' - L_{xy})^2}{L_{xy}^2} + \frac{(R_{xy}' - R_{xy})^2}{R_{xy}^2}}
\]

\[
= \sqrt{N_L^2 + N_R^2}
\]

If we further assume \(N_L\) and \(N_R\) are independent, then \(RSS_e\) follows Rayleigh distribution with variance \(\sigma^2\). The \(k\)th-percentile \(p\) of Rayleigh distribution is known to be [15]:

\[
p = \sigma \sqrt{\ln \left(\frac{1 - k}{100} \right)^{-2}}
\]

To distinguish two nearby locations \((x_1, y_1)\) and \((x_2, y_2)\) with probability larger than \(k\%), the percentile of modeling error of Okuli should be smaller than the normalized Euclidean distance of RSS between the two locations:

\[
p < \sqrt{\frac{(L_{x_2y_2} - L_{x_1y_1})^2}{L_{x_1y_1}^2} + \frac{(R_{x_2y_2} - R_{x_1y_1})^2}{R_{x_1y_1}^2}}
\]

Therefore, the Euclidean distance of RSS pairs determines how much modeling error Okuli can tolerate in order to discriminate two locations. We refer to this tolerance level as error bound. A larger error bound means Okuli can tolerate larger modeling error, thus achieving higher spatial resolution. The error bound depends on both \(L_{xy}\) and \(R_{xy}\), which renders it location-dependent.

In Figure 13, we plot the location-dependent distribution of error bound (maximum normalized error allowed to maintain 1cm accuracy), where we assume the angular responses of both LED and PDs have the typical cosine shape [12] and the workspace’s dimension is consistent with the one used in our prototype. The separation between nearby spots to be localized is set to 1cm, along both horizontal and vertical directions. We observe a minimum error bound of 0.08, corresponding to the right hand side of Equation (14). From Equation (14), we can bound \(p\) and subsequently obtain the parameter \(k\) in Equation (13). For example, to achieve 90% localization confidence for the most error-prone location spot, the standard derivation of Okuli’s modeling error \(\sigma\) should be bounded below 4%.

In practice, the error bound may differ from this analysis due to imperfect LED/PD response. However, the analysis can still be used empirically to determine how resilient Okuli can be for a given separation between target location spots.

System dimensioning. Based on the above analysis, we can numerically obtain Okuli’s localization resolution (i.e., error bound) as a function of the distance between LED and PD (which affect the \(L_{xy}\) and \(R_{xy}\)). In Figure 14, we show the relationship between the minimum error bound and distance between LED and PD. The separation between spots is again set to 1cm. We can see the horizontal resolution keeps increasing with the LED-PD distance, i.e., Okuli can tolerate more horizontal location errors with a larger LED-PD distance. This is because a larger distance between LED and PD could generate larger difference of angular response near the center which has the worst horizontal resolution. On the other hand, the vertical resolution has a turning point, since the sum distance from finger to left and right PD achieves maximum there. The vertical resolution is always higher than the horizontal one in practical range of dimensions (LED-PD distance from 1cm to 10cm).

As a result, in practical operating regime, increasing the distance between LED and PD is favorable. For instance, if the distance increases from 4cm to 10cm, the limiting error bound will nearly double, and resolution can be much higher.

5.4 Energy Efficient Light Emission

The power consumption of Okuli comes from three major components: LED, ADC and CPU, with the LED being the most power hungry one. Fortunately, Okuli can tame the LED energy cost using duty-cycling, i.e., controlling the fraction of ON-period as it runs theOOK modulation (Section 5.1).

However, the duty-cycle cannot be arbitrarily reduced. Due to the rising/falling time of LED/PD and the settling time of ADC, a guard interval (GI) is needed between turning on/off the LED and reading RSS measurement from the ADC. The requirement of GI limits the updating frequency as well as the energy efficiency. In our prototype, the GI duration, denoted as \(t_G\), is large and equal to 15ms due to the slow rising/falling time of the LED. By definition of duty cycle, we have \(D = t_{on}/T\), where \(t_{on}\) is the duration of LED being turned on and \(T\) is the period (total duration of a cycle). Since we want to reduce the duty cycle, \(t_{on}\) should be set as short
we take advantage of the unique time-domain signal features from various keystroke events. We observe that the keystroke gestures generate highly dynamic light intensity at run-time — we need to isolate such dynamics from those caused by finger movement across locations. To meet this challenge, we leave the exploration of this mechanism for future work.

6. MOBILE INTERACTION USING Okuli

6.1 A Virtual Keyboard

We envision a virtual keyboard printed on a flat surface, or a cover that can be unfolded to one side of the Okuli-enabled mobile device. This virtual keyboard is more convenient and durable than a physical keyboard since it does not require any electrical connections or batteries. Finger clicks on the printed keys can be identified by Okuli, and interpreted by mobile applications. This requires us to augment Okuli with finger-generated keystroke detection along with localization.

Keystroke Detection. Unlike the aforementioned static finger localization, keystroke gestures generate highly dynamic light intensity at run-time — we need to isolate such dynamics from those caused by finger movement across locations. To meet this challenge, we take advantage of the unique time-domain signal features from keystrokes.

Figure 15 plots the RSS perceived by the left/right PDs during various keystroke events. We observe that the keystroke gestures generate a highly consistent pattern of RSS increasing and then sharply decreasing. This is partly due to the light grooming mechanism that constrains light reflection to a small slice of the finger, and partly due to the determinism of light propagation, which suffers relatively less multipath than RF signals [16].

This observation inspires us to use a simple threshold based feature detection algorithm to detect a keystroke event. During the initial 3-point calibration stage, when a user generates a single keystroke at the farthest point, the resulting 80-percentile RSS peak is used by Okuli as a barrier for declaring a keystroke. In addition, Okuli only passes peaks lasting more than 100ms in order to filter out spurious interferences.

Keystroke Localization. Given a keystroke event, Okuli uses a two-step location matching algorithm to localize the key. It first computes the finger location by matching the resulting RSS to the model-predicted RSS of one 1mm×1mm grid on the workspace. It then maps the grid’s location to the closest key (around 1cm² grid) based on the keyboard’s geometrical outline. This approach is empirically proven to have superior performance than directly locating the keys (Section 8.2).

6.2 A Virtual Trackpad

Okuli can be easily extended to provide a trackpad-like experience for mobile interaction around a smartphone, smart watch, etc. A full-fledged trackpad entails two primitives: tracking finger movement and detecting clicks (taps).

Okuli extends its model-driven finger localization framework (Section 4) to realize tracking. It first obtains the millimeter-grid location update at 1 Hz. We can see a trade-off between sampling rate (i.e., latency) and power consumption. Okuli can leverage this trade-off to adaptively switch to idle mode and wake up when finger is detected by changing the duty cycle. We leave the exploration of this mechanism for future work.
Electronics. A number of factors are considered when choosing the experimental implementation’s electronic components. The LED used for the experimental implementation is MTE9460C2, which has an FOV of around 120° in both horizontal and vertical directions. To conserve power, it would be better to have an LED custom designed with a narrower (30°) vertical FOV. This would allow a higher percentage of the LED’s total light to be concentrated in useful directions and help alleviate multipath interference. The PD used is TEST2600, which has an FOV of nearly 120° in axial direction but 60° in the lateral direction. Due to such characteristic of the PD, we place the PDs with their axial direction being horizontal to maximize the FOV. The distance between the PDs is 8.8cm, and LED is slightly in front of the PDs. The shroud isolates the LED and the PDs so the light emitted by LED does not directly come into the PDs. Both the LED and the PDs work in the 950nm near-infrared spectrum, which is very close to visible light.

Okuli also needs a small amount of supporting electronic components. First, it needs a transistor to drive the LED and enable blinking, which is essential for ambient light removal and energy efficiency. Second, Okuli needs to digitize the light received from the PD’s. To do this, we use an Arduino UNO with a built-in ADC. The Arduino sends the sampled light intensity values to a Nexus 7 via a Bluetooth interface. Figure 18 shows the schematic corresponding to this setup.

We emphasize that a production version of Okuli can be directly built into a mobile device, evading the Arduino/Bluetooth interface plus discrete circuit components. This will significantly reduce the form-factor and improve the energy-efficiency compared with our prototype.

Applications and UI. We implement the finger localization algorithm and the virtual keyboard/trackpad applications (Section 6) in Android. The Android program runs on a Nexus 7 tablet, which processes light intensity samples, detects touch events, maps the finger location to keystroke or writing trajectory, and displays the results on the screen.

Limitations. Due to limitations with our hardware prototype (discussed in Section 5.4), Okuli can only sample the PDs at 30Hz. Together with the 10-sample smooth filter, this produces a noticeable delay of 0.33 seconds for each localization output. In a production version of Okuli, much faster ADCs and PDs could be used, which would hide this delay and would allow lower-latency position updates.

8. SYSTEM EVALUATION

In this section, we first evaluate Okuli’s performance in terms of modeling accuracy, finger-localization accuracy, and system energy efficiency. Then we showcase Okuli’s effectiveness when serving virtual keyboard/trackpad applications.

8.1 Microbenchmarks

8.1.1 Accuracy of Modeling Framework

We first evaluate the accuracy of the light propagation/reflection model (Section 4). Specifically, we follow Section 4.3 to perform the hardware and user calibration, and then directly compute the expected light RSS distribution in a 13cm × 8cm workspace, with 1cm × 1cm resolution. We compare this model output with actual RSS measurement when a finger is placed at each 1cm × 1cm spot.

Figure 19 depicts the error map within the workspace. Each grid shows the percentage error of the model w.r.t. the spot-by-spot measurement. We observe that the modeling error is location dependent. First, close to the bottom of the workspace, there exists a 9cm × 4cm region with high accuracy (90-percentile error below 10%), for both the left and right PDs. This region can reliably serve trackpad-like applications. In addition, some significant error exists, and are generally on a line pointed from PD/LED towards outside. This kind of radiative error pattern can be caused by errors introduced in angular response calibration. The factory calibration we have done is coarse-grained due to limited resolution of the light sensor we are using. The calibration tends to induce larger error near the outer-edge of the angular response curve where the LED/ PD’s gain tends to be small and not discernible. We expect such errors to be reduced in a stricter factory calibration for actual products.

Second, the modeling error tend to be slightly larger near the left/right edges, since the edges are further away from the LED/PDs, suffering from insufficient lighting. There also exists a few black spots, which is caused by the edge of our 3D-printed shroud blocking part of the LED signals. A product-level implementation with customized lenses would be able to overcome such imperfectness (Section 3).

Furthermore, note that areas with larger error tend to overlap with areas where the PDs have low angular response. Lower response means lower SNR, which causes larger error. The variation of angular response and propagation loss over space leads to location-dependent SNR and error tolerance (Section 5.3), which in turn explains the location-dependent error distribution.

8.1.2 Accuracy of Finger Localization

As analyzed in Section 5.3, Okuli can tolerate a certain amount of modeling error, as long as it does not confuse the RSS-vector at different locations. To test its localization accuracy, we focus on 100 randomly-picked points (including repeated locations) in a 9cm × 7cm area (including points on the edge) within the workspace. All the points are selected on the 1cm × 1cm grid. The workspace sits on a wood table surface in an office environment with natural background (fluorescent lighting and people walking by occasionally).

We test two different setup: the “manual” case localizes a static finger, while the “auto” case detects a finger touch and then localizes...
the finger. As shown in Figure 20, for the static finger localization, over 80% points have an error of less than 1cm, and 90% of the error values is below 1.12cm. When the location matching works in conjunction with finger detection, the error increases, because there exist decision errors that make it possible for the finger to become registered before it makes full contact with the surface, or is on its way leaving the surface. This will result in the reading being smaller than desired. Still, 90% of the errors fall below 1.43cm in this case. We have also conducted a closer examination of the spatial error distribution, and found the edge-spots tend to suffer from larger errors, which is consistent with the previous micro-benchmark.

It is also possible to use Okuli on various surfaces. As Figure 21 shows, the CDF of localization error remains relatively consistent on surfaces including black paper, white paper and a mirror-like glass. This corroborates the effectiveness of our model and calibration, which takes surface-specific impact on light reflection into account.

8.1.3 Effectiveness of Interference Suppression

Effectiveness of ambient light cancellation. To evaluate the performance of the ambient light cancellation, we put Okuli under various lighting conditions, and measure the RSS before/after the cancellation while putting finger on a fixed location. As shown in Figure 22, ambient light cancellation works ideally in an indoor environment with fluorescent light sources, whose signal strength is usually weaker or comparable with Okuli’s near-field LED light.

To test Okuli under diffusive sunlight, we place it near the window facing towards inside of the building. Despite the strong ambient light interference (shown in case w/o cancellation), Okuli can restore its legitimate RSS after cancellation. The ambient light cancellation stops working under direct sunlight, especially on a sunny day, due to ADC saturation (Section 5.1). The problem may be alleviated by increasing the ADC’s dynamic range or using analog cancellation, but this is left for our future work.

Effectiveness of dynamic background removal. To evaluate the performance of dynamic background removal, we arrange 4 different kinds of background: (i) very far-away background that can be treated as no background, (ii) a white paper standing vertically in front of Okuli, (iii) static background with the user himself/herself being the only significant background, and (iv) dynamic background with people walking by constantly. We then record the RSS before and after the cancellation. From Figure 23, we can see that although the RSS before cancellation varies significantly, it can be restored to the original level after cancellation. This indicates that our dynamic background cancellation is indeed effective.

Temporal stability of finger localization. It is a common concern for systems requiring initial calibration, that the usable duration of each calibration can be short, due to environmental changes.

To find out whether Okuli can perform consistently throughout a period of time with one calibration, we repeated the prior localization accuracy test twice – immediately after the system is calibrated and 10 days afterwards. As shown in Figure 24, the localization accuracy almost does not change over a long period of time. This is partly due to the determinism of the light propagation channel, and partly due to Okuli’s capability to suppress environment dynamics throughout background cancellation.

8.1.4 System Energy Efficiency

To measure the power consumption of Okuli, we disconnect the Bluetooth module (since it is not needed in a product-level implementation), and use the Monsoon Power Monitor [17] to supply the Arduino and the sensor board with 4.5V power. We also use the same power monitor to measure the computational power consumption of our test App running on a Galaxy Nexus phone. In Figure 25, we show the power consumption of LED, CPU and ADC respectively. Consistent with our analysis in Section 5.4, the power consumption of LED dominates, and increases proportionally with the sampling duty-cycle. The CPU power follows a similar trend, but the absolute value is much lower. The ADC consumes a stable power of 35mW. Overall, at Okuli’s default duty cycle of 0.5, the total system power consumption is 380mW, comparable to a typical web browsing session on a smartphone’s WiFi interface [18].

Given the dominating LED power consumption in Okuli, we envision huge space for making Okuli more energy efficient. According to Equation (15), when the hardware can work with a short GI, it is possible to employ a duty cycle well below 0.5. For instance, if 100Hz sampling rate is desired, and the system can work with 0.5mS GI, then the minimum duty cycle is 0.05, hence the energy consumption can be reduce to around 100mW as predicted by Equation (16). Currently the GI of our system is limited by the hardware prototype which requires us to maintain a high duty cycle of 0.5 and hence relatively higher operating power than ideal.
8.2 Application Tests

Virtual Keyboard. We print 20 rectangular-shaped keys of 2cm width and 1.5cm height on a piece of paper, and use it as the workspace for Okuli's virtual keyboard application. The keys are next to each other and placed together in the center of the working area, arranged in a 4-key-per-row manner, and totaling 5 rows. After calibration, we generate 100 random keystrokes, and the error in distance of the pressed key and detected key is recorded. As shown in Figure 26, over 90% of the keystrokes are detected correctly with 2-step method, while the direct locate method only detects about 86% of the keystrokes correctly.

We also conduct a user survey that covers 7 users with different finger characteristics. Each user repeats the above experiment (20 1cm×1cm keys). The users are told to use the device just like a touchscreen. With 100 random key inputs on the same keyboard, average accuracy is 91.1%, and performance is highly consistent across users (Figure 27).

Virtual Trackpad. We evaluate the virtual trackpad’s performance by replaying the user input captured into a handwriting recognition software, MyScript Stylus, to assess the accuracy for possible handwriting input applications. The user runs our virtual trackpad Android app to write on the Nexus 7 tablet, which is simultaneously used as the workspace for Okuli. Figure 28 shows two example writing trajectories.

We also conduct a user study of the trackpad, where each user inputs 100 random Latin characters. The result (Figure 29) demonstrates an overall recognition rate of 90.6%, which is comparable to writing directly on the Nexus 7 tablet (94.5%). The trackpad has a noticeable latency of around 0.5s due to the low-end PD, ADC and microcontroller we are using (Section 7). We expect a full-fledged implementation, integrated with a mobile device, will be able to overcome these limitations.

9. DISCUSSION

Multi-finger input and touch. Currently, Okuli is limited to single-finger localization, which has no ambiguity as long as the two PDs’ angular responses are well conditioned (Section 5.3). By using more PDs, Okuli may further improve its resolution and discern multi-finger inputs. It would be interesting to investigate the system dimensioning and resolution as the number of PDs increases. However, this is beyond the scope of our current work.

Full-sized keyboard. Due to the PDs’ limited field-of-view, the workspace of our current Okuli implementation cannot cover a full keyboard. However, this limitation can be easily overcome by using better hardware, i.e., LEDs/PDs with wider FOV and higher sensitivity. In addition, since Okuli’s localization mechanism is generic and can track fingers in arbitrary location within the working area, more complicated key arrangement other than the dial-pad-like layout is also possible.

System stability and usability. The light grooming mechanism and background suppression has greatly reduced the impact of irrelevant body parts and environment dynamics. Users’ inconsistent behavior does affect the accuracy of the model behind Okuli. Fortunately, the range of such uncertainties is quite limited. In particular, we have observed in the user study that users’ finger rotation/tilting is usually well below 60° unless intentionally induced. Moreover, Okuli’s light grooming mechanism ensures a super-narrow vertical FOV, such that the PD still sees a relatively consistent light intensity even under such behavior dynamics.

Reducing processing latency. As a prototype, the circuit of Okuli is not optimally tuned at this stage. The photo-transistor is slower than a carefully chosen photo-diode, and there is no amplifier or matching circuitry between the sensors (which generate tiny photo-currents) and the microcontroller (which has a large input capacitance). We expect a full-fledged circuitry design can achieve significantly lower latency than what we observed in the prototype.
Impact of sunlight. The current Okuli implementation does not work well under direct sunlight. Sunlight creates very strong interference and easily saturates the sensors, rendering the ambient light cancellation ineffective. Yet, by employing hardware improvements, such as DC removal and high resolution ADC, this issue can be resolved.

10. RELATED WORK

Object location sensing technologies have been extensively explored for the purpose of human-computer/mobile interaction. The object can be human body, limb, hand, or as fine-grained as fingers. The underlying technologies can be classified into active sensing (w.r.t. objects instrumented with sensors or transceivers), and passive sensing (w.r.t. uninstrumented objects).

Visible light based active location sensing techniques have been driven by the emerging trend of visible light communication (VLC). A VLC link piggybacks information by flashing LED lights or an LED screen, which can be demodulated by a light sensor or camera [8, 19, 20]. The light attenuation vs. distance relation is explored in Epsilon [10] to complement motion sensors and locate a mobile VLC receiver. Luxapose [9] leverages multiple ceiling mounted LED lights to triangulate a smartphone, by using the camera and image distortion algorithms. Both systems achieve sub-meter scale location accuracy. Besides visible light, alternative medium of signals and devices have been explored in active sensing, including RFID [1], infrared [21], magnetic field [22] and motion sensors [2]. All these techniques require instrumenting the user with retro-reflective tags, sensors or transceivers.

Passive sensing systems can overcome such limitations. Infrared photoplethysmogram (PPG) tracks pulses or blood volume changes by measuring reflectance or transmittance. Infrared (IR) proximity sensors have also found mature applications in modern mobile devices. For example, SideSight [11] captures multi-touch gestures by observing the diverse proximity detection output of an array of 10 IR sensors, placed on the edge of a smartphone. Hoverflow [23] orients the IR sensor array towards the user to cover a large 3D space, allowing for handheld interaction. A similar concept was explored to facilitate gesture input for smart watch [24]. These systems can only sense coarse hand/finger gestures and require intensive training for each input. High-resolution, training-free multi-touch sensing has been demonstrated in ZeroTouch [25], FlexAura [26], etc., which install hundreds of IR sensors around a flat panel or similar interaction space.

Okuli’s fundamental design principle departs from these passive IR sensing systems, in that it treats the light propagation channel as a wide-angle diffusive channel, instead of a “laser-beam”. Its fundamental approach is model-driven — it explicitly models the light intensity attenuation and reflection and can localize a finger within the wide FOV of an LED transmitter, instead of detecting finger “cutting” or proximity. This principle enables Okuli to achieve an unprecedented precision using only a single LED and two light sensors, allowing deployment on the edge of mobile devices of practical size.

Prior art has extensively explored vision based approaches for mobile interaction. Intuitively, by using a high-resolution camera instead of “single-pixel” photodetector, objects can be detected and localized with high precision. For example, hand gestures can be easily recognized via continuous video frame processing [27]. Infrared or near-infrared cameras can detect thermal emission or near-IR reflection from hands/fingers, thus identifying touch/click gestures [28–31]. Higher precision can be achieved via structured infrared-light projection [32], i.e., emitting bar patterns or speckles towards target, and identifying its 3D structure and distance. This approach has been adopted by commercial hand/finger tracking systems like Kinect [33] and Leap Motion [34]. Such vision based systems, however, share many common limitations. As previously mentioned, they typically require a projector and/or multiple cameras, which do not suit very thin form factor devices. Also, cameras incur high energy cost under continuous sensing/processing, and hence they are unsuitable for battery-powered devices. Finally, cameras, especially side-facing ones, can pose threats to privacy if the system is compromised and exploited maliciously.

Passive sensing can be alternatively realized using acoustic sensors [5, 35], electric field sensors [36, 37], etc. These signals are relatively less deterministic compared with light, and thus they typically require extensive training before use.

11. CONCLUSION

Light emitters and sensors have been widely used to sense proximity or object presence, with the intuitive rationale of “object cutting light beams”. In this paper, we have achieved a more ambitious goal of locating a small object on a 2D plane, with around one-centimeter scale precision, using only one LED emitter and two photodetectors (PDs). Our solution, called Okuli, uses a model-driven approach to localize a finger with minimal user training. We have navigated various design/performance tradeoffs in Okuli, using both analysis and real experiments. We believe Okuli marks an important step in passive object/activity sensing through visible light.

Acknowledgement

We appreciate insightful comments and feedback from the shepherd and the anonymous reviewers. The work reported in this paper is supported in part by the NSF under Grant CNS-1318292, CNS-1343363 and CNS-1350039.

12. REFERENCES