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ABSTRACT
Context-awareness is the ability of software systems to sense
and adapt to their physical environment. Many contempo-
rary mobile applications adapt to changing locations, con-
nectivity states, available computational and energy resources,
and proximity to other users and devices. Nevertheless,
there is little systematic support for context-awareness in
contemporary mobile operating systems. Because of this,
application developers must build their own context-awareness
adaptation engines, dealing directly with sensors and pollut-
ing application code with complex adaptation decisions.

In this paper, we introduce CAreDroid, which is a frame-
work that is designed to decouple the application logic from
the complex adaptation decisions in Android context-aware
applications. In this framework, developers are required—
only—to focus on the application logic by providing a list
of methods that are sensitive to certain contexts along with
the permissible operating ranges under those contexts. At
run time, CAreDroid monitors the context of the physical
environment and intercepts calls to sensitive methods, ac-
tivating only the blocks of code that best fit the current
physical context.

CAreDroid is implemented as part of the Android runtime
system. By pushing context monitoring and adaptation into
the runtime system, CAreDroid eases the development of
context-aware applications and increases their efficiency. In
particular, case study applications implemented using CAre-
Droid are shown to have: (1) at least half lines of code fewer
and (2) at least 10× more efficient in execution time com-
pared to equivalent context-aware applications that use only
standard Android APIs.

Categories and Subject Descriptors
D.4.7 [OPERATING SYSTEMS]: Organization and De-
sign—Real-time systems and embedded systems
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1. INTRODUCTION
Computation is becoming increasingly coupled with the

physical world. It is now commonplace for mobile applica-
tions and systems to adapt their functionality to user loca-
tion, connectivity status, device orientation, and remaining
battery percentage. This ability for software to sense, re-
act, and adapt to the physical environment has been termed
context-awareness [31].

Context-aware applications typically feature multiple in-
terchangeable methods and sets of parameters, each of which
is activated when the system is under a specific set of physi-
cal conditions. A music streaming application, for example,
may request lower quality streams from a server when us-
ing a cellular network radio than when using WiFi. Social
network applications may discover and promote interaction
between users in close physical proximity. A video encoding
application may delay or lower the quality of its processing
to save energy when the system is running out of battery.

When implementing context-aware applications, develop-
ers typically must probe sensors, derive a context from sen-
sor information, and design an adaptation engine that ac-
tivates different methods for different contexts. With ade-
quate support from the runtime system, context monitoring
could be performed efficiently in the background and adap-
tation could happen automatically [27]. Application devel-
opers would then only be required to implement methods
tailored to different contexts. Just as file and socket abstrac-
tions help applications handle traditional input, output, and
communication; a context-aware runtime system could help
applications adapt according to user behavior and physical
context.

In this paper we introduce CAreDroid, a framework for
Android that makes context-aware applications easier to de-
velop and more efficient by decoupling functionality, map-
ping, and monitoring and by integrating context adaptation
into the runtime. In CAreDroid, context-aware methods are
defined in application source code, the mapping of meth-
ods to context is defined in configuration files, and context-
monitoring, and method replacement are performed by the
runtime system.
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Because applications using CAreDroid do not need to mon-
itor and handle changes in context directly, they can be
written using significantly fewer lines of code than would
be required if only using the standard Android APIs. Be-
cause CAreDroid introduces context-monitoring at the sys-
tem level, it can avoid the indirection overhead of read-
ing sensor data in the application layer, therefore making
context-aware applications more efficient.

To allow for transparent switching between polymorphic
implementations—which are alternative implementations of
the same method that either provide same functionality with
different performances or provide alternative functionality
for the same method—the CAreDroid framework is inte-
grated as part of the Dalvik Virtual Machine (DVM). In par-
ticular, at runtime, CAreDroid intercepts the various sensor
flows in order to determine the current context of the phone
(where context parameters include energy, network connec-
tivity, location, and user activity). CAreDroid uses this in-
formation along with the provided per-application config-
uration in order to dynamically and transparently trigger
adaptations and to find the set of methods that, at any
point in time, better suit the device’s context.

1.1 Related Work
A context-aware system requires three major elements:

(1) a set of mutually replaceable polymorphic methods, (2) a
context monitoring system, and (3) an adaptation engine
that switches between different methods based on the mon-
itored context. We divide the related work based on the
three elements mentioned above.

1.1.1 Developing Context-Dependent Behavior
We can identify three main strategies in developing the

context-dependent behaviors as follows.
Code partitioning: Code partitioning for remote exe-

cution is based on the idea of cyber-foraging [30] where
mobile devices offload some of the work to a remote ma-
chine with more resources like a server [23]. The server can
then execute the heavy work on behalf of the mobile de-
vices that have scarce energy. The idea of cyber foraging
has been addressed in previous work with different aspects.
Both Spectra and Chroma [16, 9] do program partitioning
and run part of the code on a surrogate server. They both
rely on an earlier work called Odyssey [26] that explored the
idea of application adaptation based on network bandwidth
and CPU load. Puppeteer [15] focusses on adaptation to
limited bandwidth by making transcoding. Transcoding is
a transformation of data to change the fidelity [26] of the
application to save energy.

Reflective techniques: Reflection, originally noted by
Smith [32], is a technique that has emerged in computing
languages to provide inspection and adaptation of the under-
lying virtual machine. Reflective techniques have been ex-
ploited in mobile computing middleware to address context
change. Reflective mechanisms have been used by Capra et
al. [11] such that applications acquire information about
the context, and then the middleware behavior and the un-
derlined device configuration are tuned accordingly.

Alternate code paths: Alternate code paths or algo-
rithmic choice has been addressed in energy-aware software
literature such as Petabricks [5] and Eon [33]. The choice
between alternate algorithmic implementations of the same
code is done dynamically based on the energy availability.

Each code path has different energy consumption in a trade-
off with quality or the accuracy of the result. A code path
that is chosen by a pre-determined battery life has been
explored in [21] in which tasks that have identical function-
ality are defined by developers. These tasks have different
quality of service versus energy usage characteristics for em-
bedded sensors application. In Green [7] a calibration phase
is done at the beginning to determine the sampling rate—
which eventually affects the accuracy of the result—in order
to adapt to the available energy. Algorithmic choice has
been further used in software libraries to deliver the best
performance based on the hardware configuration [17, 22].

1.1.2 Context Monitoring
Efficient context monitoring has been studied throughly

in literature. The work reported in [19, 24] provides frame-
works for sensor-rich context monitoring. The main focus
of that work is to minimize the energy consumption of the
context-monitoring system. To further enhance the energy
efficiency, Suman [25] exploits the temporal correlation be-
tween contexts in order to infer some context from others
without reading the actual sensor measurements. To avoid
performance degradation due to minimizing the energy con-
sumption in context monitoring frameworks, the work in [20,
13] focuses on the optimization between continuous context
monitoring, energy, latency and accuracy. Moreover, mo-
bile operating systems currently support context monitoring
functionalities. For example, the recently added getMost-
ProbableActivity() API can be used to return the result of
the Android OS activity recognition engine (e.g. biking or
walking). Other examples are the Geofencing APIs provided
by both Andorid and iOS which allow listening to the en-
trance and exit events from particular places and therefore
allow for location based context applications.

1.1.3 Adaptation Engine
Prior work related to adaptation engines can be classified

into two broad categories (i) application-oriented adaptation
engines and (ii) operation system-oriented adaptation en-
gines. The work reported in [10, 35] is a representative work
for the first class. In this work, an application specific adap-
tation engines are designed and implemented with specific
focus on energy-aware context adaptation. The work in [6,
34, 12] lies in the second category, where adaptation engines
are proposed to perform context-aware OS functionalities
such as context-aware memory management, context-aware
scheduling, ... etc.

1.2 Paper Contribution
The work reported in this paper can be categorized under

the class of application-oriented adaptation engines. While
there is a rich body of work in designing application-specific
adaptation engines, a systematic support for context-awareness
is still missing from contemporary mobile operating systems.
The work in this paper aims to fill this gap by providing OS
support for the adaptation needed by context-aware Android
applications.

In this paper we discuss the design and implementation of
CAreDroid and present application case studies demonstrat-
ing the effectiveness of the system. Technically, we make the
following contributions:

• We design CAreDroid, a framework for the implemen-
tation of context-aware polymorphic methods and for
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Figure 1: CAreDroid System Architecture. The de-
veloper provides a set of polymorphic methods and
provides a configuration file describing how these
methods shall be called. At runtime, CAreDroid
monitors the phone context and adapts the applica-
tion behavior accordingly.

the definition of application-specific rules used to map
methods to contexts (Section 3);

• We extend the Dalvik Virtual Machine in the Android
OS to provide adaptation support for context-aware
application. The resulting CAreDroid can transpar-
ently switch between polymorphic versions of applica-
tion methods at runtime (Section 5);

• We provide two levels of complexity of the mapping be-
tween contexts to methods, (i) a binary criteria (called
must fit) and a relaxed criteria (called best fit) (Sec-
tion 5.2);

• We demonstrate how application developers can lever-
age CAreDroid to make applications context-aware with
minimal disruptions to the standard application devel-
opment process (Section 6).

The remainder of this paper is organized as follows. Sec-
tion 2 introduces the system architecture of CAreDroid. De-
tails of CAreDroid including its configuration, monitoring,
and context adaptation algorithms are presented in Sections
3, 4, and 5 respectively. Section 6 shows the evaluation
and case studies. Finally, we discuss some issues related to
the design of CAreDroid and give conclusions in Sections 7
and 8, respectively.

2. SYSTEM ARCHITECTURE
The main objective of CAreDroid is to provide the ap-

plication developer with support to easily build adaptation
in context-aware applications. Hence, from a developer per-
spective, the design of CAreDroid needs to satisfy the fol-
lowing properties:

1. Usability: CAreDroid needs to add minimal overhead
on the application developer at development time.

2. Performance: The adaptation engined needs to add
minimal execution overhead when the application is
running.

Motivated by these two design objectives, we designed
CAreDroid as discussed in this section. A conceptual overview
of the CAreDroid architecture is shown in Figure 1. Appli-
cations normally call polymorphic methods f and g. Each
method is aliased to one of its versions (f1 and g2, respec-
tively, in the example). A sensitivity configuration file, de-
fined on a per-application basis, describes rules that deter-
mine under what context each of the polymorphic versions
should be used. For each version of a method, sensitivity
rules define acceptable ranges of operation for different sen-
sors of system context. Method f1 could define, for example,
two rules stating that WiFi connectivity and battery charg-
ing status should be equal to true, while f2 could define one
rule stating that remaining battery capacity should be be-
tween 0% and 20%. Rules are assigned priorities that help
determine which of the versions should be used when multi-
ple rules are valid.

In the system layer, CAreDroid parses the application
configuration file to discover adaptable methods and their
rules of operation. A context-monitoring module abstracts
the various sensors in the system, and exposes context in-
formation to an adaptation engine. When changes in con-
text occur, the adaptation engine changes the aliasing of
the adaptable methods according to the sensitivity rules. If
more than one version of a method matches the current con-
text, the priorities of the sensitivity rules are used to choose
between them. When there are no alternatives of a method
that exactly matches the context, CAreDroid chooses the
version that most closely conforms to the current state of
the device. CAreDroid is organized in three modules:

Context Sensitivity Configuration File
For each context-aware application, a sensitivity configura-
tion file maps methods to contexts. The file is structured
as a series of sensitive methods and their respective context
sensitivity lists described in XML format. In keeping with
our goal of decreasing development complexity for context-
aware applications, the file is a straightforward description
of acceptable ranges of operation for each method under
different contexts. A detailed description of the CAreDroid
configuration file is presented in Section 3.

Context Monitor
CAreDroid has a dedicated module that continuously probes
the current phone context. CAreDroid supports both raw
contexts that can be directly known by reading the state of
the hardware (e.g. WiFi connectivity, battery level) as well
as higher level inferred contexts such as mobility status (e.g.,
walking, running) that require advanced processing of sen-
sor information. As mentioned in Section 1.1.2, the design
of context monitoring systems is a well studied topic. The
main work in this paper does not focus on efficient imple-
mentation of context monitoring system. However, context
monitoring is yet an essential part in order to evaluate any
adaptation engine. Hence, in Section 4 we describe a sim-
plistic implementation of context monitoring which can be
augmented by any of the previous proposed context moni-
toring algorithms.
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Adaptation Engine
In order to choose the correct polymorphic implementation
that best suits the current context, CAreDroid uses the data
supplied by the developer in the configuration file. Alterna-
tive implementations of sensitive methods are connected to-
gether through a replacement map that lists all candidates
methods that can be used for a sensitive call. Whenever
more than one candidate implementation fits the current
context, CAreDroid uses a conflict resolution mechanism to
pick the implementation with the highest priority. Because
it frees developers from having to implement adaptation
strategies in the application layer, the CAreDroid adapta-
tion engine is the main factor in meeting our goal of decreas-
ing development complexity for context-aware appications.
Section 5 shows how context-to-method matching and con-
flict detection are implemented efficiently to meet our goal
of reducing runtime overhead.

3. SENSITIVITY CONFIGURATION FILE
The configuration file is an XML file that is supplied by

the application developer. To fit in the Android flow, the
configuration file is stored as an asset file packed with the
application package file (APK). In this section, we describe
the structure of this XML file along with the post-processing
steps performed by CAreDroid over this file.

3.1 Configuration File Structure
For each sensitive method, the developer provides differ-

ent polymorphic implementations. Each polymorphic imple-
mentation of a method is described by a name, a tag, and
a priority. The name corresponds to the method name in
source code. The tag associates different implementations of
a method with one another. For example, if methods f1 and
f2 are polymorphic implementations of the same method,
then both of them must be associated with the same tag, for
example f . Finally the priority for a method helps the sys-
tem resolve ambiguities when multiple versions of a method
satisfy the current context.

For each polymorphic implementation, the developer as-
signs a sensitivity list. This sensitivity list is the list of con-
text states for which this polymorphic implementation shall
be triggered. In our current implementation of CAreDroid,
we focus on four context categories:

• Battery state: In this category, we define three con-
texts which are (1) the remaining battery capacity
(0% − 100%) (2) the battery temperature (−30◦ C –
100◦ C) which is an indicative of high battery load as
well as elevated power consumption; and (3) operating
battery voltage, which is an indicative of the battery
health.

• Connectivity state: In this category, we define three
contexts: (1) WiFi connection status (On - Off), (2)
WiFi link quality (0−70 A/V◦), and (3) RSSI Received
signal strength indication (0− 4).

• Location: In this category, we consider one context
state, which is GPS location. In this state, the devel-
oper is allowed to provide the latitude and longitude
coordinates of a square area.

• Mobility state: In this category, we consider only the
current mobility state of the phone holder, which can

<Method>
<MethodName>AdjustCameraPowerAware
</MethodName>
<priority>1</priority>
<tag>cameraAdjust</tag>
<batterycapacity>

<vstart>0</vstart>
<vend>25</vend>

</batterycapacity>
</Method>
<Method>

<MethodName>AdjustCameraWhileRunning
</MethodName>
<priority>2</priority>
<tag>cameraAdjust</tag>
<batterycapacity>

<vstart>20</vstart>
<vend>100</vend>

</batterycapacity>
<mobility>run</mobility>

</Method>

Figure 2: Snippet of a CAreDroid configuration file.

take one of the following values: still, walking, running
and driving.

3.1.1 Example
To illustrate the construction of the configuration file,

we provide a small example in Figure 2. In this exam-
ple, we have two polymorphic methods for adjusting the
camera parameters under different contexts. One method,
AdjustCameraPowerAware, is designed to save energy.
Hence, its BatteryCapacity range is from 0% up to 25%,
and it can execute whether wifi is on or off. The second
method is dedicated to adjusting the camera while the user
of the device is running. For example, this method should
adjust the focus and the scene parameters of the camera to
give a better quality image. Accordingly, the mobility is
assigned to be run.

3.2 Configuration File Processing
After the developer supplies the CAreDroid configuration

file, several post-processing steps are required at the instal-
lation time of the application. In particular, the XML file
needs to be parsed, and the extracted information is then
used to fill specific data structures. Figure 3 shows how
CAreDroid flow extends the normal Android compilation
and installation flow. This flow diagram shows the steps
needed to post-process the configuration file. Parsing of the
configuration file, discovery of sensitive methods, and reg-
istration of adaptation parameters with the adaptation en-
gine is implemented in the Dalvik Virtual Machine (DVM),
as described in the remainder of this section.

3.2.1 Sensitive Method Discovery
Upon compilation of the Java code, the generated Dalvik

Executable File (DEX) contains all compiled bytecodes of
methods stacked on top of each other. A call to a method
is then accomplished by pointing to the offset of the first in-
struction inside the DEX file. For example, let us consider a
call to the myObject.foo() method. The following byte-
code:

invoke-virtual {v14}, [method@101e]
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Figure 3: CAreDroid’s extended installation flow. CAreDroid intercepts the installation process of the app
on the device in order to parse the sensitivity configuration file. The final outcome of this process is two data
structures named “Replacement Map” and “Table of Range Identifiers.”

is used, where v14 is the reference to the object instanti-
ated from the class myObject, and 0x101e is the offset of
the first instruction in myObject.foo() in the DEX file.
Note that the textual name of the method (e.g. “foo”) is
still preserved in the generated DEX file and the association
between the method name and the method offset can still
be extracted.

The DEX file along with all asset files (including the CAre-
Droid configuration file) are then packaged in the application
package file (APK). When the APK file is installed, Android
creates a new virtual machine to host the application. Dur-
ing this process, the Android flow extracts the DEX file and
post-processes it in order to generate the Optimized DEX
(ODEX) file.

The DEX optimization consists of two main steps. The
first step is executed while class loading takes place. During
this step, each method is assigned with a local method ID
(compared to the global method ID assigned in the DEX).
The second step of the DEX optimization process takes place
when object references are linked with their classes. In this
step, inheritance, polymorphism, method overriding, and
method overloading are resolved. In particular, a virtual
table is generated for each class. Each resolved method cor-
responds to an entry in this virtual table. Therefore, each
method is now identified with its unique index inside it class
virtual table. As a result, the call to the myObject.foo()
method is further translated into:

invoke-virtual-quick {v14}, [000c]

where v14 is the reference to the class object, myObject,
and 000c is the index for method foo inside that class’s
virtual table. Note that the association of the method name
with its index in the virtual table is no longer preserved in
the ODEX file.

Switching between different polymorphic implementations
is equivalent to intercepting the operation of the bytecode
corresponding to invoke-virtual-quick and supplying
a different method ID. To perform this operation, CAre-
Droid must be able to keep track of the method IDs and
relate them back to the IDs of different polymorphic imple-
mentations. Therefore, CAreDroid modifies the DEX/ODEX

build process in Android to add hooks for context-awareness
in sensitive method calls. This is accomplished through a ta-
ble of range identifiers and a replacement map. This process
is shown in Figure 3.

3.2.2 Replacement Map (RM) and
Table of Range Identifiers (TRI)

The“Replacement Map”(RM) is a collection of (key, value)
pairs defined for each polymorphic method.
The purpose of this map is to link each of the multiple poly-
morphic alternatives with their sensitivity lists. The key of
this map is a composite key that consists of the pair of class-
id and method-id extracted initially from the DEX file. The
value field of the RM is an array whose length is equal to
the number of contexts (mobility, location, battery capac-
ity, etc.). This array specifies the sensitive operation range
for this method for all different contexts. To facilitate this
association, we introduce another data structure called the
“Table of Range Identifiers” (TRI).

The TRI consists of multiple associative arrays. For each
of the context sensors, we create a corresponding associative
array. To construct such an array, we extract all the opera-
tion ranges provided in the configuration file, and and asso-
ciate a uniquely generated operation range identifier (ORI)
to each of the operation ranges. An example for such an
associative array for battery capacity is shown in Table 1.
Since the ranges of operations can vary from one class to an-
other (based on the developer’s intent , as described by the
configuration file), we generate a TRI per class per context.
The association between the class and the corresponding set
of TRIs is made after the optimization of the DEX file pro-
cess takes place. Once all TRI tables are built, we connect
them to the RM by copying the corresponding ORI from
the TRI data structure. An example of the RM is shown in
Table 1.

At runtime, CAreDroid uses the TRI along with the cur-
rent context to retrieve all ORIs that satisfy the current
context. These ORIs are then used as inputs to the RM
to retrieve the corresponding method IDs. If more than one
method matches the ORIs, a conflict is discovered and needs
to be resolved as described in Section 5.
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B-Range ORI

0→100 1
20→30 2
10→20 3
30→100 4

S-Range ORI

0→2 1
1→4 2
2→3 3
0→3 4

. . .

Class ID Method ID B T V W Q S M L

0x01 0x00F 1 2 1 2 4 2 1 4
0x01 0x01E 2 3 4 2 3 3 2 2
0x02 0x02A 2 2 1 0 0 0 2 1
0x02 0x01F 2 2 1 0 0 0 8 3

Table 1: On the left, examples of TRI tables for Battery capacity and Signal strength (RSSI) contexts.
Each TRI associates a unique Operation Range Identifier (ORI) to each record. For each class, CAreDroid
creates TRI for all different contexts. The association between the TRIs and the class is done later, after
the optimization of the DEX files takes place. On the right, a Replacement Map that associates each
key = (class-id, method-id) with its corresponding ORIs. CAreDroid creates a unique RM for the application.
— legend: B: Battery Capacity, T: Battery Temperature, V: Battery Voltage, W: WiFi connectivity, S: Signal
strength, Q: Signal Quality M: Mobility L: Location.

3.2.3 ODEX Extension
After CAreDroid constructs all the TRIs and the RM

data structures, the DEX file passes through the normal
Android optimization process, resulting in the generation of
the ODEX file. Since the optimization process of the DEX
file can result in a change in the method IDs, CAreDroid
intercepts the process of optimizing the DEX files in order
to update the RM, as shown in Table 1.

Finally, we extend the ODEX file structure by adding
a reference to the RM data structure, which is generated
by the described process. We extend the internal Android
class data structure in order to associate the corresponding
TRIs generated for that particular class. We also extended
the internal Android object and method data structures by
adding sensitivity flags. These flags are used later by the
CAreDroid Adaptation Engine to facilitate the method
switching.

3.3 Online Change of Context Ranges
While the configuration file needs to be specified by the

developer at development time, the sensitive values of some
sensitive contexts may not known until the code is running
on the phone. For example, an application that changes its
behavior whether the user is at home or at work. The loca-
tion information (longitude and latitude of home and work)
is not known at development time. Accordingly, CAreDroid
supports online modification of the values associated with
each sensitivity context. This takes place by asking the de-
veloper to write a specific file to the file system. CAreDroid
parses this file whenever appropriate and re-updates the TOI
accordingly. Note, that CAreDroid allows only changing the
values associated with each sensitivity list but not the num-
ber of sensitive contexts associated to a polymorphic imple-
mentation.

4. CAREDROID CONTEXT MONITORING
In this section, we describe how CAreDroid acquires the

current context at runtime with less overhead than Android
Java APIs. Phone contexts can be numerous, and include
raw values (like accelerometer data, GPS longitude and lat-
itude, remaining battery capacity, etc.), or inferred states
(like user mobility). While the in contribution of this paper
is not efficient implementation of a context monitoring sys-
tem, this is an essential part of any adaptation engine. In
this section, we give details on how CAreDroid acquires both
raw and inferred phone contexts. The work in this section

can be indeed complemented by any of the context monitor-
ing systems that appeared currently in the literature.

4.1 Raw Context Monitoring
Android exposes sensor information to the software stack

through a Hardware Abstraction Layer (HAL). The HAL
features a set of sensor managers that work as an interme-
diate layer between the low-level drivers and the high-level
applications.

In order to reduce the overhead, we need to bypass the
HAL layer and the associated sensor managers. This can be
done by snooping on the interface between the HAL and the
low-level device drivers through the sysfs virtual file sys-
tem. In particular, each sensor (e.g. accelerometer, battery
sensors, and WiFi) device driver exports its data into a set
of files located under /sys/class/. In our work, we create
an internal Dalvik VM thread that continuously reads these
files to determine the state of the battery sensors and WiFi
availability. The WiFi signal quality and signal strength are
monitored via reading /proc/net/wireless. Similarly,
the GPS location is determined by snooping over the An-
droid Binder that connects the Android LocationManager
with the GPS hardware driver.

4.2 Inferred Context: Mobility State
Mobility state detection is calculated by processing the

raw accelerometer data obtained by the internal VM thread
described above. In order to infer the mobility state, we
adapt the classification procedure described in [28, 29] to
detect whether the user is stationary, walking, or running.
This classifier is based on the Geortzel algorithm [18]. Fi-
nally, to reduce the computational delay due to running the
mobility state classifier, we let the classifier run on a sepa-
rate DVM internal thread.

5. CAreDroid ADAPTATION ENGINE
The adaptation Engine is the core of CAreDroid. It is

where the method replacement happens at runtime. In this
section, we explain how CAreDroid extends the execution
phase of the Android flow to automatically and transpar-
ently switch between methods.

5.1 Dalvik Interpreter Extension
Recall that the developed application is compiled and

translated into an ODEX file. Bytecode stored in the ODEX
file is then interpreted at runtime. In particular, the Dalvik
Virtual Machine (DVM) runtime utilizes two types of inter-
preters. The first is called the portable interpreter, which is

391



invoke-virtual-quick
C

Ar
eD

ro
id

 F
lo

w
N

or
m

al
 A

nd
ro

id
   

   
   

Fl
ow

  Replacement
        Map

intercept 
Dalvik Interpreter Method ID    Class Virtual

          Table

Class ID,
Pointer to 

method byte 
code

Execute method

CAreDroid Dalvik
     Interpreter
      Extension

Class ID

Table of Range 
Identifiers

Table of Range 
Identifiers

Table of Range
     Identifiers

Operation 
Range 

Identifiers        CAreDroid
   Decision Graph

Current Context 

Replaced 
Method ID

Class ID,
Resolution   
   Cache update cache 

Replaced 
Method ID

Class ID,

cache miss 
cache hit Method ID

Class ID, 

Figure 4: Flow of CAreDroid Adaptation Engine at runtime. The CAreDroid extended interpreter intercepts
the execution of the Dalvik opcode invoke-virtual-quick to check whether the method invoked is sensitive or
not. If the method is sensitive, then the CAreDroid adaptation engine checks the current context and picks
the correct polymorphic method. This process is done through leveraging the information in the TRI and
RM data structures along with the conflict resolution mechanism implemented using the decision graph.
Finally, to speed up the process, CAreDroid uses a resolution cache, which exploits the temporal locality of
the context.

implemented in C code and is not specific to a certain plat-
form architecture. The second interpreter is called the fast
interpreter which is implemented in assembly language and
tailored towards a specific platform. The DVM supports
switching between the two interpreters at runtime.

In our framework, we extend the portable interpreter to
support the CAreDroid runtime engine. The extended in-
terpreter checks the current interpreted ODEX bytecode.
Whenever the bytecode corresponding to the invoke-virtual
instruction is detected, CAreDroid intercepts the execution
of the interpreter. It then checks the arguments of the
invoke-virtual instruction — the method ID and the
class ID — against the sensitivity flags in the extended
ODEX file, described in Section 3.2.3. If the sensitivity
flag is set, then CAreDroid needs to pick the polymorphic
method that best fits the current context.

The process of choosing the best polymorphic implemen-
tation needs to resolve the conflicts in the user configura-
tion. This is done through the CAreDroid decision graph
module (discussed later) along with the TRI and RM data
structures. In order to accelerate the process of picking the
correct polymorphic implementation, CAreDroid uses a res-
olution cache that exploits the temporal locality of the adap-
tation decisions. This process is shown in Figure 4 and illus-
trated in the CAreDroid decision graph and the resolution
cache in the following subsections.

Note that the portable interpreter (where CAreDroid is
running)has a negative effect on the execution time of the
application. To address this issue, we switch between the
fast interpreter and the portable interpreter at runtime. The
execution starts normally with the fast interpreter and, when
the interpreter hits an invocation of a sensitive class, the in-
terpreter switches to the portable interpreter and the CAre-

Droid adaptation process takes place. After executing the
sensitive method, the interpreter switches back to the fast
version.

5.2 Which Polymorphic Implementation
to Pick?

In order to choose the correct implementation that best
suits the current context, our framework utilizes the data
supplied by the developer in the configuration file. Note
that it is possible that, for a given context, multiple methods
are valid candidates, leading to a conflict that needs to be
resolved.

5.2.1 Best Fit vs Must Fit
The first step is to choose a set of candidate methods. We

allow for two policies. In the first policy, must fit, a method
is considered a valid candidate if the current context satisfies
all the operation ranges for all sensitive contexts. In the
second policy, best fit, a method is a valid candidate if the
current context satisfies at least one operation range of the
sensitive contexts. The choice of policy is determined by the
configuration file.

5.2.2 Decision Graph
We use a Directed Acyclic Graph (DAG) to choose the

candidate method. Each level of the graph marks one sen-
sitive context (e.g. battery capacity, mobility state). The
sensitive contexts are ordered based on their priority as de-
fined in the configuration file. For each sensitive context,
we create nodes for all operation range identifiers (ORI)—
previously discussed in Section 4— that appear in the re-
placement map (RM) data structure. In other words, to
build the decision tree, we traverse the RM horizontally.
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Figure 5: An example of a Replacement Map(RM)
(right) and its associated decision graph (left). The
nodes at each level correspond to the ORIs in the
same level of the associated RM. The edges in
the decision graph correspond to the five methods
shown in the RM. The shaded nodes correspond to
the ORIs that match the current context. The solid
arrows correspond to the active paths that match
both the RM and the current context. Finally the
path marked in green corresponds to the method
that satisfies all the ORIs, and therefore this method
is the one picked by CAreDroid for execution.

For each row of the RM, we create nodes corresponding to
all distinctive ORIs in that row. This process is repeated
for all the rows in the RM. An example of an RM and the
associated decision graph is shown in Figure 5.

The methods contained in the RM columns dictate the
decision graph topology. Accordingly, we traverse the RM
vertically and connect the ORIs that correspond to the same
method by edges. This is shown for the same example, in
Figure 5.

When the phone context is reported, we use the TRIs
in order to know which ORIs are active, i.e., which ORIs
match the current context. The next step is to use this
information to eliminate some choices in the decision graph.
For example, in Figure 5, we mark the active ORIs with
a gray color and the corresponding active edges with solid
arrows.

The final step is to compare the available active paths
that start from the top level. In the must fit policy, CAre-
Droid considers only the active paths that connect the first
level all the way to the lower level. If no such path exists,
then no method replacement is going to take place. On the
other hand, the best fit policy considers the longest path that
starts from first level. Referring to the example in Figure 5,
only one active path is passing through all the DAG levels
and corresponds to method M4. Therefore, CAreDroid picks
this method for execution. The Class ID and Method ID of
this method is reported back to the normal Android flow
to be executed. If further conflict exits, we use the method
priority reported in the configuration file.

Platform SLOC % Increase

Non-context aware (Base) 275 -
Context-aware (Pure Java) 606 120%

CAreDroid 275 +78a 28.3%

aSLOC of the XML Configuration file

Table 2: significant line of code (SLOC) results for
case study 1 showing the SLOC for different im-
plementations along with the percentage increase of
SLOC relative to the non-context aware implemen-
tation.

5.3 Conflict Resolution Cache
While the adaptation strategy for CAreDroid is fairly straight-

forward, performing it for every individual sensitive method
call in the system would incur in an unnecessary overhead.
In order to decrease the overhead of the context-to-method
resolution mechanism, our framework uses a resolution cache.
Our heuristic assumes that the operating point does not
change over short time periods. Therefore, if a method is
called multiple times within a short amount of time (inside
a loop for example), the same polymorphic implementation
might be used for all of these calls. The cache is used to
store the recently resolved candidates, that is, the recent
phone context along the method ID that is chosen for each
phone context. Each entry corresponds to the eight values
of the phone context along with the method ID for the opti-
mal method. The cache uses a Least Recently Used (LRU)
approach to replace entries.

6. EVALUATION
We evaluate CAreDroid with four case studies. In the first

one, we focus on assessing two metrics namely, reducing the
number of significant lines of code and the execution time of
the context-aware application. In the remaining three case
studies, we show examples of applications that can benefit
from context adaptation using CAreDroid.

All case studies are carried over a Nexus 4 phone running
a modified system image for platform 4.2 API 17 [3]. The
execution time is obtained using the Android SDK tracer
[4]. The size of the original system image for Android 4.2 is
234.368 MB, the modified system image that support CAre-
Droid is 245.26 MB. Hence, the overhead in the system im-
age is 4.6%.

6.1 Case Study 1: A Simple Application
In this case study, we implement a simple application that

has only one sensitive method with three polymorphic im-
plementations. In particular, this simple application imple-
ments a numerical solver for linear equations (which is a
cornerstone algorithm in many image processing algorithms
used to enhance photos before posting them to social media
applications). We implement three polymorphic variants of
this solver named LUP-decomposition (LU), Cholesky de-
composition (CHD), and Conjugate Gradient (CG). These
three methods have different memory and computation time
characteristics. These mathematical functions are exhaus-
tively used in image processing applications. Each imple-
mentation corresponds to a particular tradeoff between per-
formance and computation time. In particular, CHD gives
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Platform Solver

CPU time (ms) Overhead

Method
Decision Tree Context Total

without with Monitoring without with without with
time cache cache (parallel thread) cache cache cache cache

Non-context
aware (Base)

LU 8.322 - - 8.322 -
CHD 16.872 - - 16.872 -
CG 13.375 - - 13.375 -

Context
aware

(Pure Java)

LU 8.322 0.227 5.093 13.642 63.92%
CHD 16.872 0.776 5.093 25.741 52.56%
CG 13.375 0.351 5.093 18.819 40.70%

CAreDroid
(Must Fit)

LU 8.322 0.183 0.030 0.336 8.841 8.688 6.23% 4.39%
CHD 16.872 0.335 0.031 0.336 17.543 17.239 3.98% 2.17%
CG 13.375 0.198 0.030 0.336 13.909 13.741 3.99% 2.736%

CAreDroid
(Best Fit)

LU 8.322 0.183 0.031 0.336 8.841 8.689 6.23% 4.41%
CHD 16.872 0.732 0.031 0.336 17.635 17.239 4.522% 2.17%
CG 13.375 0.489 0.030 0.336 14.2 13.741 6.17% 2.73%

Table 3: Execution time results for case study 1 showing the profiling of different parts for all the three
implementations. The overhead is computed relative to the non context-aware implementation. The results
show the efficiency of both the must fit and best fit policies. It also shows the performance increase resulting
from using the cache.

the most accurate results while suffers from high computa-
tion time. On the other extreme, LU gives the least accurate
results (compared to CHD and CG) while leads to better
computation time. The purpose of this case study is to
characterize the performance of CAreDroid while switching
between these three polymorphic implementations.

In order to characterize the CAreDroid performance, we
generate an arbitrary configuration file that assigns each of
the three solvers to different battery and connectivity con-
texts. We evaluate CAreDroid against a pure Java imple-
mentation performing the same functionality. That is, the
pure Java application listens to changes in battery and WiFi
connectivity using the standard HAL callback mechanism
provided by the Android APIs. We implement a non-context
aware implementation that magically knows which polymor-
phic method shall be called without knowing the context
(for the purpose of comparison) and we call it the base non-
context aware.

6.1.1 Reduction in Significant Line of Code (SLOC)
In this example, using CAreDroid reduces the SLOC for

the application by a factor of 2x compared to a Java imple-
mentation using standard Android APIs. Table 2 shows the
SLOC for each of the implementations.

6.1.2 Reduction in Execution Time
In this test case, we let the 4 different implementations

(non context aware, pure Java, must fit and best fit) run over
the phone for several hours while collecting profiling infor-
mation. The profiling information are then averaged out and
the result is reported in Table 3. To further investigate the
effect of the resolution cache, we run the test with and with-
out the cache functionality to allow for comparison. The
results in Table 3 show that CAreDroid reduces the CPU
time overhead (compared to the pure Java implementation)
by a factor of 12x, on average, while adding a minimal over-
head (2.5%–4.4%) compared to the non context-aware case.
Furthermore, the resolution cache leads to decreasing the
decision tree time by at least an order of magnitude when-
ever there is no change in the operating point. Finally, with

no cache (or alternatively when a cache miss occurs) best fit
policy adds slightly more overhead compared to the must
fit policy due to the complexity of the decision graph used
by the former. The same order of overhead also appears in
the pure Java implementation because of the added code for
switching between contexts.

6.1.3 Energy Profiling
Finally, we characterize the energy consumption (and hence

the battery life time) due to context monitoring and adap-
tation. In this experiment, we monitor the voltage and dis-
charging current of the battery during 2.5 hours while run-
ning the application under the four platforms (best fit, must
fit, pure Java, and non-context aware). The experiment
starts at the same battery capacity and at room temper-
ature. We run each experiment three times. In the first one,
we deactivate the context switching functionalities and fo-
cus only on the energy consumed by the context monitoring.
These results are reported in Figure 6(a). In the second run,
we run both context monitoring as well as context switch-
ing but calling an empty method. The energy measurements
are then subtracted from the energy measurements from the
previous experiment. The purpose of this experiment is to
profile the effect of the decision tree and the context switch-
ing mechanism. This is shown in Figure 6(b). Finally, we
run the full implementation to get the overall energy con-
sumption of our system and compare it to the non-context
aware one.

Overall, the results show that bypassing the HAL layer
and performing the context monitoring inside the OS lead
to decreasing the energy consumed by a factor of 36%. The
results also show a similar decrease of energy consumption
due to implementing the context switching inside the OS
with a slight difference between the must fit and the best fit
switching policies. Also, as seen in Figure 6(c), the energy
consumption of pure Java implementation consumes around
69.33% more energy compared to CAreDroid. This energy
consumption can be further improved by using energy-aware
context monitoring techniques that previously reported in
the related work (Section 1.1.2).
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Figure 6: Energy consumption results for case study 1 showing (a) energy used when context monitoring is
running alone (b) energy consumed by the context switching subsystem and (c) the total energy consumed.
On each case, we plot the energy consumed by the pure Java implementation as well as the must fit and best
fit implementations of CAreDroid. The results in (a) show that bypassing the HAL layer and implementing
the context monitoring inside the OS allowed CAreDroid to use 36% less energy within the 2.5 hours lapse
of the experiment. The results in (b) show that both Must fit and Best fit adaptation significant outperform
the pure Java implementation in terms of energy consumed (and hence battery lifetime). The overall results
(c) show that CAreDroid consumes only 6.73% energy compared with the non-context aware implementation
and provides 69.33% energy saving compared to the pure Java implementation.

6.2 Case Study 2: A Context-Aware Phone
Configuration

With increasing reported accidents resulting from texting
while driving, we develop an application that changes the
phone configuration based on the underlying context of the
phone1. We manifest the location, mobility state, and
battery in this application. In particular, we would like the
application to change the phone configuration as follows:

• Default: keep the phone in its default configuration.

• Driving: (1) disable messaging and email notifica-
tions, (2) block certain caller numbers specified by a
list (i.e. forward calls from this list to the voice mail)
and (3) enable bluetooth (to connect the phone to car
speaker).

• Running: (1) enable GPS (if not enabled), (2) block
certain caller numbers specified by a list, and (3) mute
the alarms.

• At home: (1) enable WiFi, (2) block certain caller
numbers specified by a list, (3) raise the alarm volume,
and (4) set ringer volume to normal.

• At work: (1) enable WiFi, (2) lower the alarm vol-
ume, (3) put the phone in vibrating mode, and (4)
block certain list of caller numbers.

• Power saving: (1) lower the ringer volume, (2) dis-
able bluetooth (if enabled), and (3) enable the auto-
matic adjustment of screen brightness.

1Some applications in the market attempt to control the
phone configuration like Tasker [2] and Locale [1] by pro-
viding hooks to the user to configure the phone based on
certain rules that the user defines. However, these appli-
cations have only boolean decision. The rules must be all
satisfied in order to change the configuration, while CAre-
Droid provides more complex formula (the best-fit policy).
Moreover, Tasker and Locale do not support all the contexts
supported by CAreDroid.

Platform SLOC % Increase

Non-context aware (Base) 282 -
Context-aware (Pure Java) 873 201%

CAreDroid 282 +277a 98.2%

aSLOC of the XML Configuration file

Table 4: Significant lines of code (SLOC) results
for case study 2 showing the SLOC for the three
implementations along with the percentage increase
of SLOC relative to the non-context aware imple-
mentation.

Platform CPU timea Overhead

Non-context aware (Base) 1.942 -
Context aware (Pure Java) 12.14 525.12%

CAreDroid (Best Fit) 2.015 3.76%

aCPU Time (ms) = Method time + HAL Callback time +
Inferences

Table 5: Execution time results for case study 2
showing the overhead for the different implementa-
tions.

For each of these configurations, a polymorphic method is
implemented. The objective is to call the correct method
based on the context. Similar to the previous case study,
we implemented a non-context aware implementation (for
the purpose of comparison), a context-aware implementa-
tion using the normal Android flow, and a context-aware
implementation using CAreDroid.

6.2.1 Reduction in Significant Line of Code (SLOC)
CAreDroid decreases the code complexity (quantified by

SLOC) by a factor of 2× (including the SLOC of the XML
configuration file) compared to the implementation based on
the normal Android flow, as shown in Table 4.
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6.2.2 Reduction in Execution Time
In this test case, CAreDroid is configured and the phone

is allowed to change between different contexts leading to
a change in the application behavior. The time profiling is
done across different contexts and the one with maximum
CPU overhead is reported in Table 5.

For this case study, the pure Java implementation adds
a 525.12% CPU overhead. On the other hand, CAreDroid
introduces a minimal overhead of 3.76% compared to the
non-context aware implementation. The large overhead of
the former can be explained by observing that there are 16
possible cases that need to be handled if the application
developer were to implement the same app without using
CAreDroid. Needless to say that the developer—without
CAreDroid—has to implement all the Android listeners to
all contexts as well as provide the high-level inferences of mo-
bility state from the raw data. The small overhead in CAre-
Droid compared to the pure Java implementations again
can be accounted to the fact that all the context-awareness
operations (context monitoring and adaptation) are imple-
mented natively inside the operating system.

6.3 Case Study 3: Context-Aware Camera
In this case study, we build a context-aware camera ap-

plication. The camera adjusts its features parameters based
on the phone context. We have five different methods that
CAreDroid alternates between. The focus of this study is
on making the focus, scene mode and flash mode adaptive
to the context. However, this can be extended to handle all
the camera features. The five modes are listed as follows:

• Default: Configure the focus mode to “default”

• When runing: adjust the focus mode to the “contin-
uous picture” mode.

• When walking: adjust the scene mode to the“steady
photo” mode.

• When still: adjust the focus mode to the “fixed”
mode”.

• Power saver: (1) adjust the flash mode to “off”, (2)
adjust the focus mode to “fixed” mode, and (3) adjust
the quality of the picture to “minimum.”

Similar to previous case studies, we implemented a polymor-
phic method for each of these modes and the objective is to
call the appropriate method based on the phone context.

Platform SLOC % Increase

Non-context aware (Base) 277 -
Context-aware (Pure Java) 782 182%

CAreDroid 277 +133a 48%

aXML Configuration file

Table 6: Results of the significant line of code
(SLOC) for the three implementations of the Smart
Camera application used in case study 3. The results
shows the SLOC along with the percentage increase
relative to the non-context aware implementation.

The test is performed as follows. First a photo is captured
while the phone is held in a standstill position using the orig-
inal camera application provided by the phone. Next, the

(a) (b) (c)

Figure 7: Photos taken by the Smart Camera ap-
plication developed for case study 3: (a) the photo
taken while the phone holder is standing still, (b)
the photo taken while the phone holder is walking
and no context-awareness is taking place, and (c)
photo taken while the phone holder is walking and
using the Smart Camera application built on top of
CAreDroid.

user starts to walk/run while trying to capture the photo
for the same object again using the original camera applica-
tion. Finally, the same experiment is done while using the
CAreDroid-based context-aware camera application.

The results of the implemented application is shown in
Figure 7. Figure 7(a) shows the original photo captured from
a stand still position. Figure 7(b) shows the captured photo
while the phone holder is walking and no context-awareness
processing is taking place, and finally, Figure 7(c) shows
the captured photo with the user is walking and using the
developed context-aware camera with CAreDroid. As with
the previous case studies, Table 6 shows the reduction of the
overhead in SLOC when the context-aware Camera applica-
tion is developed using normal Android flow compared to
the proposed CAreDroid flow. The table shows a reduction
of SLOC by more than a factor of 3×.

7. DISCUSSION
The underlying idea behind CAreDroid is the ability of

the system to sense and adapt to variations in the environ-
ment and available resources. In this section we discuss some
issues that faced us during the design and implementation
of CAreDroid.

7.1 Why is CAreDroid implemented inside the
OS?

One possible design of CAreDroid was to design it as a
library which provided context adaptation functionalities
through a set of exposed APIs. Compared to the current
design of CAreDroid, the library-based design falls behind
in terms of the two design criteria discussed in Section 2
named Usability design and Performance. From the usabil-
ity point of view, the library implementation of the adap-
tation engine forces the developer to issue subsequent calls
to the library APIs. Missing calls to the library APIs may
result to degradation in the context awareness of the devel-
oped application. On the other hand, the current design
of CAreDroid makes the application developer completely
oblivious from the adaptation. He is asked only to provide
the adaptation policy in the XML configuration file. After-
wards, CAreDroid intercepts the execution of the methods
while it is being interpreted by the Dalvik VM and perform
the adaptation automatically. From the performance point
of view, implementing the context adaptation and monitor-
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ing in the low level results into less execution time as proved
by the experimental test cases shown in Section 6.

7.2 Privacy
Sensing and understanding the user’s context and tak-

ing decisions accordingly can lead to various privacy leaks.
Android privacy mechanism depends on providing the user
with different queries in order to grant permissions to the
application to use the sensory data. In our work, CAre-
Droid ensures that the adaptation policy specified by the
developer does not use sensory data that are not permitted
by the user. For this end, CAreDroid parses the applica-
tion’s permissions included in the Android manifest file2.
The adaptation engine in CAreDroid uses only permissible
contexts as per application permissions.

7.3 Developer Matters
Despite the fact that the adaptation engine decision is

obfuscated from the developing phase, in some scenarios—
for example when the best fit policy is used—the developer
may be interested in retrieving the current operating point.
Therefore, CAreDroid addresses this issue by providing an
API called “read_operating_point()” which can be used to
read the current values of different contexts.

7.4 Limitations
The CAreDroid framework described here is not without

some limitations:

• Polymorphic methods in CAreDroid must be pure func-
tions, i.e., they cannot perform I/O and cannot change
global program states, and their output must depend
only on the method arguments. To allow for non-
pure functions, the framework would require state-
migration procedures between every possible pair of
polymorphic methods.

• CAreDroid assumes that an application developer can
provide multiple implementations of sensitive meth-
ods. Specifying the right constraints is not an easy task
and it may be better to suggest the right constraints
to the developer during a validation phase of the ap-
plication. However, this is an open research point and
previous work [14, 8] has identified the importance of
enforcing the developer to suggest the adaptation pol-
icy and not letting the adaptation engine automati-
cally synthesize the adaptation policy.

• CAreDroid also expects the application programmer to
be aware of suitable ranges of operations for different
sensitive methods. In the future, we intend to explore
automated code profilers that could suggest ranges of
operation for each of the choices, helping users in defin-
ing suitable adaptation configuration files.

7.5 Broader Uses of CAreDroid
CAreDroid supports connectivity context such as Wifi

connectivity, signal strength and quality of the signal as well
as low level context such as battery temperature. These
contexts can be manifested to decide if some intensive com-
putation should be offloaded to a server or if an approxi-
mate computation should be used. In particular, if battery

2an Android XML file that declares the permissions required
by the application

capacity is good (high enough) and there is WiFi connec-
tivity with good strength then CAreDroid can switch to a
method that offloads intensive computation to a server and
remove the burden of computation from the phone. Hence,
the concept of cyber-foraging discussed in Section 1.1.1 can
be directly implemented using CAreDroid. Similarly, ap-
proximate computation (or algorithmic choice as discussed
in Section 1.1.1) can be implemented using CAreDroid by
manifesting the temperature context as well as the battery
capacity context.

8. CONCLUSION
Context-aware computing is a powerful technique for phys-

ically coupled software. It can enhance functionality and
improve resource usage of applications by adapting them to
context. In this paper, we present CAreDroid, an adaptation
framework for context-aware applications in Android. CAre-
Droid allows applications developers to develop context-aware
applications without having to deal directly with context
monitoring and context adaptation in the application code.
In CAreDroid, multiple versions of methods that are sensi-
tive to context are dynamically and transparently replaced
with each other according to application-specific configura-
tion file. By pushing the context monitoring and adapta-
tion functionalities to the Android runtime, CAreDroid is
able to provide context-awareness more efficiently and with
significantly fewer lines of code compared to current An-
droid development flow. In particular, using different case
studies, we show how CAreDroid can be used to develop
context-aware applications. Results from these case stud-
ies show that CAreDroid reduces the code complexity by at
least half while decreasing the computation overhead by at
least a factor of 10× compared to non-CAreDroid applica-
tions.
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