Low-Bandwidth Self-Improving Transmission of Rare Training Data

Shilpa George, Haithem Turki, Ziqiang Feng, Deva Ramanan,
Padmanabhan Pillai†, Mahadev Satyanarayanan

Carnegie Mellon University and †Intel Labs
Many things in ML simplified if you already have a good training set

But what if you are trying to assemble that training set?

from data only found in remote and inaccessible places?

of a new, rare event?
Extreme Sensor to Backhaul Mismatch

4K Video Camera \rightarrow 30 Mbps demand
future higher resolution, multispectral cameras will demand even higher bandwidths

Unmanned probes often have very poor wireless backhaul connectivity

- **deep space and inter-planetary networks** (10 – 100 kbps, $10^2 – 10^6$ s one-way latency)

- **underwater acoustic networks** (10 – 100 kbps)

- **LoRa networks** (1 – 100 kbps)

Many exciting discoveries await us in these remote locations
A Perfect Storm

Convergence of three factors

• Extreme mismatch of sensing vs transmission data rates
 can’t blindly ship all data

• Rare unlabeled events
 < 0.1% of frames, possibly much rarer, can’t do random sampling

• New phenomenon
 no pre-built accurate detector/classifier, data is unlabeled

How to Retrieve Almost All Events Seen?

“Event” = True Positive (TP)
Our Solution: Live Learning

Interactive human-in-the-loop workflow that combines

- Semi-Supervised Learning (SSL)
- Active Learning
- Transfer Learning

Pipeline sensing, inferencing, transmission, labeling, and training

Key steps in pipeline

1. **Bootstrap with weak initial model** (few-shot learning)
2. **Grow training set with newly-discovered TPs** (human confirmation for every TP)
3. **Train new model and replace current model asap** (cloud or edge training site, bandwidth-adaptive)
4. **Iterate steps 1–3 during mission**
Live Learning Overview

\[\sum D_i \gg \sum B_i \]
\[M_{it} = \text{model at time } t \text{ at scout } i \]
Hawk: Open Source Implementation

https://github.com/cmusatyalab/hawk

Based on ZeroMQ delay-tolerant messaging

Completely model-agnostic (easy plugin of new DNN models)

Paper reports extensive investigations re detailed design choices

• Top-K vs MaxEnt selective transmission
• Hybrid SVM-DNN model evolution vs pure DNN evolution
• Revisit policy to collect missed positives
• Importance of tiling high-res data
• …
Experimental Evaluation

1. In spite of extreme low bandwidth, can scouts discover most TPs encountered?

2. How close is Hawk to an ideal system?
 - Oracle (perfect precision and recall)
 - BruteForce (imperfect precision and recall)
 - model with the same architecture but trained in advance on fully labeled incoming data.
 - grossly overfitted to the data that will be seen during the mission.
 - requires all incoming data to be seen in advance, and transmitted to the cloud for labeling and training.
 - may not have perfect precision and recall.

3. Can Hawk use additional bandwidth effectively?

4. Is Hawk DNN-agnostic?

... many more questions ...
Dataset: Aerial Drone Surveillance

DOTA: Dataset for Object deTecion in Aerial Images (published in 2018)
Consists of 2806 fully labeled images across 15 classes
Image Resolution: Ranges from 800x800 to 4000x4000
Derived dataset has 252231 labeled tiles having base rate of 0.1%

256x256 tiles from large 4K images
Dataset: Planetary Exploration

HiRISE: High Resolution Imaging Experiment from Mars (published in 2019)

Images collected by Mars Reconnaissance Orbiter

Dataset has 7 classes of landmarks on Martian terrain

Consists of 73,031 labeled images of size 227x227

(a) Dark Dune (TPs=64)
(b) Impact Ejecta (TPs=64)
(c) Spider (TPs=64)
(d) Swiss Cheese (TPs=64)
Dataset: Underwater Sensing

Brackish: Marine dataset (published in 2019)

Images of marine animals in a brackish strait with varying visibility

Consists of 14,518 labeled images of 1080p resolution

Derived dataset has 563,829 tiles across 6 classes with target baserate of 0.1%
Scout-based Training - 12kbps (DOTA)

Class: Roundabout

Total TPs = 336
Scout-based Training - 12kbps (DOTA)

(a) Roundabout
(b) Swimming Pool
(c) Large Vehicle
(d) Airplane
See Paper for Many More Results

1. Robust results across many datasets and classes (aerial drone, Mars, underwater)
2. Value of revisiting discard pile (result caching of old scores)
3. Live Learning is DNN agnostic (ResNet-50, YOLOv4, ExtremeNet results)
4. Ability to use higher bandwidth effectively (12 kbps, 30 kbps, 100 kbps)
5. Dynamic choice of cloud training versus scout training
6. Diversity Sampling to improve recall
7. Integration with Few-Shot Learning
Take-Away Message

Gross bandwidth mismatch in remote sensing will grow worse

Live Learning is a viable solution to this problem

Key idea: *Integrate Learning with Selective Transmission & Human Labeling*

Hawk discovers up to 87% of the TPs discovered by BruteForce

Bonus: *Hawk also helps with limited human bandwidth*