Cost-effective On-device Continual Learning over Memory Hierarchy with Miro

Xinyue Ma¹, Suyeon Jeong¹, Minjia Zhang², Di Wang, Jonghyun Choi³, Myeongjae Jeon¹
UNIST¹ Microsoft² Yonsei University³

On-device Continual Learning

<u>data drifts</u>: data distribution changes over time, creating unseen tasks

Human activity recognition

New real-life activities and gestures

Video analytics

Unseen objects, scenes, and lighting conditions

On-device Learning is essential:

- Protect privacy-sensitive data
- Promptly adapt to new data for customization -> Through Continual Learning!

On-device Continual Learning

<u>Learning Incrementally</u> as new data becomes available

<u>Forgetting:</u> Previously learned knowledge gradually fades away

Remembering through Episodic Memory (EM)

Training on both new and old data

- Designed for server computing
- No sufficient consideration on energy-efficiency

Old data stored in RAM and storage

Slow, Economic Secondary Storage (e.g., \$20 for a 256 GB SD Card)

Fast, Expensive RAM

Higher <u>data diversity</u> → **Higher accuracy**

Old data stored in RAM and storage

Slow, Economic

Training Step 1

Training Step 2

Can we improve HEM at runtime, considering more system resources to make it more cost-effective?

Higher <u>data diversity</u> → **Higher accuracy**

Cost-effectiveness in HEM

More resources used → More energy spent

→ Higher accuracy

The Memory Buffers

Memory Buffers (Stream + EM) is related to GPU and Memory

NVIDIA Jetson TX2

Energy ∝ Memory Buffer Sizes

different allocations to Stream and EM for a fixed budget.

Better Allocation for a Fixed Budget

- Best allocation size differs across memory budgets.
- Larger memory budget does not guarantee better accuracy.

Best Allocation Among All Possible Budgets

- Some configurations (A) are better than the others.
- The best configuration changes over time.

The Swap Ratio

Swapping has minimum impact on energy consumption and a low knee point.

Turning Observations to Design Principles

- P1. Identifies the best configuration in terms of cost-effectiveness.
- P2. Updates the configuration when new tasks arrive.
- P3. Configures the swap ratio as high as possible.
- +P4. Adapts to changes in resource states in the system.

11/17

Overall Architecture of Miro

2. Find the Best Configuration

3 & 4. Adapting to Changes in Resource States

Swap Ratio

I/O Congestion

Halving the swap ratio

Memory Buffers (SB+EM)

Lower Memory Budget

Blacklist the over-budget

configurations

Evaluation - Setup

SYSTEM PLATFORMS

NVIDIA Jetson TX2

NVIDIA Jetson Xavier NX

70

50

Evaluation – Generalizability

Miro is more *cost-effective* across the task domains.

Evaluation – Scalability

ImageNet1k (146GB) split into 50 Tasks

- Consistently higher cost-effectiveness
- Scalability for longer and larger workloads

Conclusion

 We explored the design parameters of HEM and analyzed their impacts on cost-effectiveness.

• We built Miro, a system runtime that **dynamically** reconfigures CL tasks, to achieve **cost-effective** on-device continual learning.

 Miro shows higher cost-effectiveness on 5 datasets over 3 task domains, and great scalability for longer and larger workloads.

A&9

Thank you for listening!