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On-device Continual Learning

data drifts: data distribution changes over time, creating unseen tasks

Human activity recognition Video analytics
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Self-Driving
Pipeline

New real-life activities and gestures Unseen objects, scenes, and lighting conditions

On-device Learning is essential:

» Protect privacy-sensitive data
« Promptly adapt to new data for customization =» Through Continual Learning!



On-device Continual Learning

Learning Incrementally as new data becomes available
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Forgetting: Previously learned knowledge gradually fades away




Remembering through Episodic Memory (EM)

Training on both new and old data
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* Designed for server computing
* No sufficient consideration on energy-efficiency
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A System Approach: Hierarchical Episodic Memory (HEM)

Old data stored in RAM and storage
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Higher data diversity =» Higher accuracy




A System Approach: Hierarchical Episodic Memory (HEM)

Old data stored in RAM and storage

Training Step 1 Training Step 2
Slow, Economic — — — —

Can we improve HEM at runtime, considering more system
resources to make it more cost-effective?
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Higher data diversity =» Higher accuracy



Cost-effectiveness in HEM
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The Memory Buffers

Memory Buffers (Stream + EM) is related to GPU and Memory
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different allocations to Stream and EM for a fixed budget.

*Without modifying the model



Better Allocation for a Fixed Budget
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* Best allocation size differs across memory budgets.

* Larger memory budget does not guarantee better accuracy.



Best Allocation Among All Possible Budgets

A Best config for a fixed budget
Memory Budget = 8K
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* Some configurations (A)are better than the others.

* The best configuration changes over time.



The Swap Ratio
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Swapping has minimum impact on energy consumption and a low knee point.



Turning Observations to Design Principles

Identifies the best configuration in terms of cost-effectiveness.

Updates the configuration when new tasks arrive.
Configures the swap ratio as high as possible.

Adapts to changes in resource states in the system.




Overall Architecture of Miro
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2. Find the Best Configuration
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Cutline: Filtering out unpromising

configurations



3 & 4. Adapting to Changes in Resource States
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Evaluation - Setup

. Generalizability » <« Scalability —
DATASETS

CIFAR100 UrbanSound8K DSADS Tiny-ImageNet ImageNet-1K
(sok [ 197MB) (8.7k [ 184,MB) (9k / 163MB) (100k / 1.2GB) (1.28m [ 146GB)

SYSTEM PLATFORMS

NVIDIA Jetson TX2 NVIDIA Jetson Xavier NX




Evaluation — Generalizability

1.HEM

2.BestStatic

3. FairShare

Using the default config
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Miro is more cost-effective across the task domains.




Evaluation — Scalability

ImageNetik (146GB) split into 5o Tasks
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* Consistently higher cost-effectiveness
» Scalability for longer and larger workloads




Conclusion

* We explored the design parameters of HEM and analyzed
their impacts on cost-effectiveness.

* We built Miro, a system runtime that dynamically re-
configures CL tasks, to achieve cost-effective on-device

continual learning.

* Miro shows higher cost-effectiveness on 5 datasets over
3 task domains, and great scalability for longer and larger
workloads.
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