Coded Caching for Content Distribution

Urs Niesen

MobiHoc 2018

Importance of Content Distribution

- Video on demand is driving network traffic growth
 - Netflix streaming service, Amazon Prime Video, Hulu, Verizon
 / Comcast on Demand, . . .
- IP video traffic is predicted to make up 82% of all IP traffic by 2021¹

¹Cisco, "The Zettabyte era: Trends and analysis," Tech. Rep., Jun. 2017.

Importance of Content Distribution

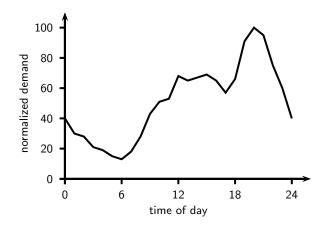
- Video on demand is driving network traffic growth
 - Netflix streaming service, Amazon Prime Video, Hulu, Verizon / Comcast on Demand, . . .
- IP video traffic is predicted to make up 82% of all IP traffic by 2021¹
- Places significant stress on service provider's networks

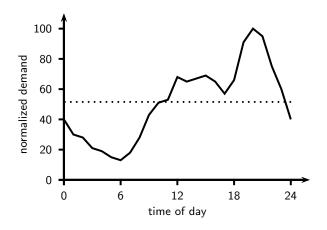
¹Cisco, "The Zettabyte era: Trends and analysis," Tech. Rep., Jun. 2017.

Importance of Content Distribution

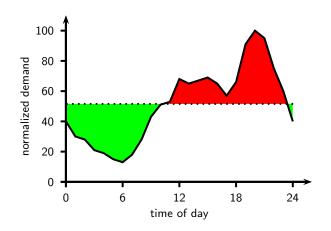
- Video on demand is driving network traffic growth
 - Netflix streaming service, Amazon Prime Video, Hulu, Verizon / Comcast on Demand, . . .
- IP video traffic is predicted to make up 82% of all IP traffic by 2021¹
- Places significant stress on service provider's networks
- Caching (prefetching) can be used to mitigate this stress

¹Cisco, "The Zettabyte era: Trends and analysis," Tech. Rep., Jun. 2017.

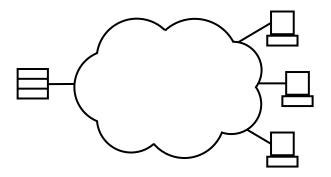


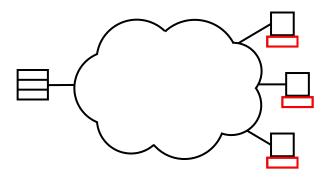


■ High temporal traffic variability

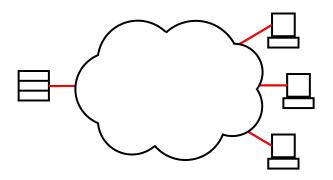


- High temporal traffic variability
- Caching can help smooth traffic





■ Placement phase (5am): Populate caches



- Placement phase (5am): Populate caches
- Delivery phase (8pm): Request and deliver movies

Conventional beliefs about caching:

Conventional beliefs about caching:

■ Caches useful to deliver content locally

Conventional beliefs about caching:

- Caches useful to deliver content locally
- Local cache size matters

Conventional beliefs about caching:

- Caches useful to deliver content locally
- Local cache size matters
- Statistically identical users ⇒ identical cache content

Conventional beliefs about caching:

- Caches useful to deliver content locally
- Local cache size matters
- Statistically identical users ⇒ identical cache content

Conventional beliefs about caching:

- Caches useful to deliver content locally
- Local cache size matters
- Statistically identical users ⇒ identical cache content

This talk will argue:

■ The main gain in caching is global

Conventional beliefs about caching:

- Caches useful to deliver content locally
- Local cache size matters
- Statistically identical users ⇒ identical cache content

- The main gain in caching is global
- Global cache size matters

Conventional beliefs about caching:

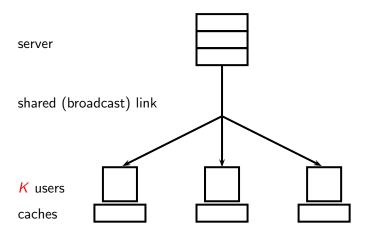
- Caches useful to deliver content locally
- Local cache size matters
- Statistically identical users ⇒ identical cache content

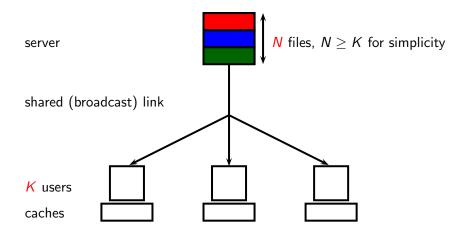
- The main gain in caching is global
- Global cache size matters
- Statistically identical users ⇒ different cache content

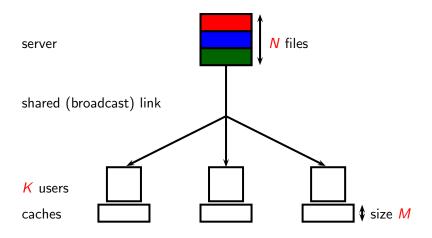
Conventional beliefs about caching:

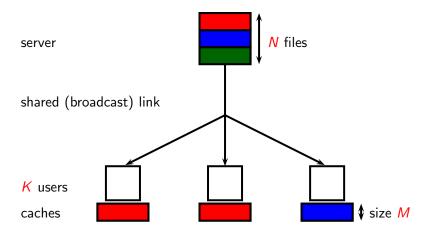
- Caches useful to deliver content locally
- Local cache size matters
- Statistically identical users ⇒ identical cache content

- The main gain in caching is global
- Global cache size matters
- Statistically identical users ⇒ different cache content
- Coded multicasting as key enabler

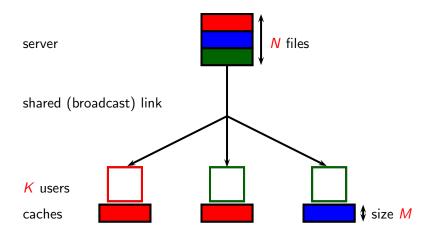




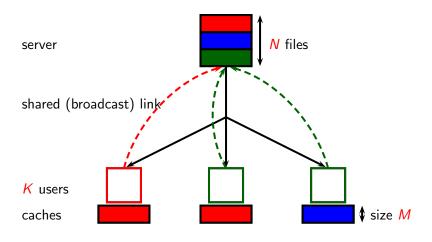




Placement: cache arbitrary function of files (linear, nonlinear, ...)



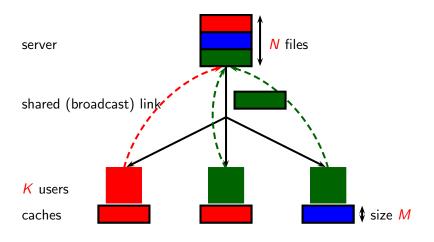
Delivery:



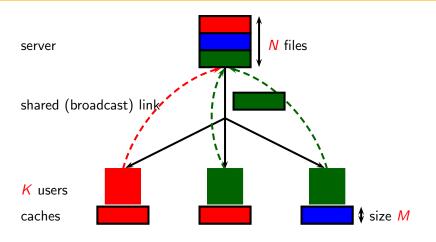
Delivery: - requests are revealed to server



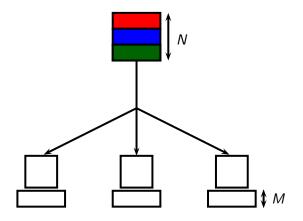
Delivery: - requests are revealed to server - server sends arbitrary function of files

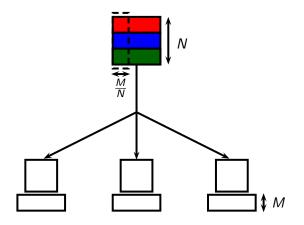


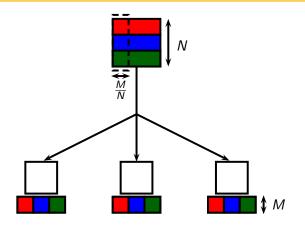
Delivery: - requests are revealed to server - server sends arbitrary function of files

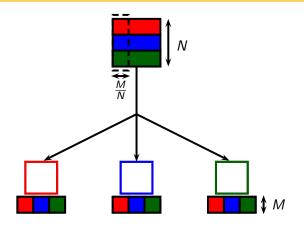


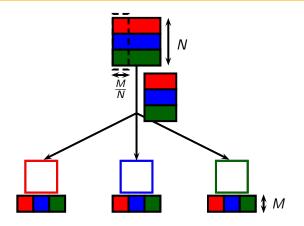
Question: smallest worst-case rate R(M) needed in delivery phase?

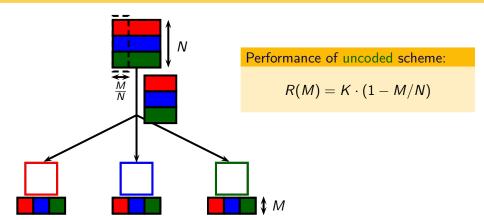


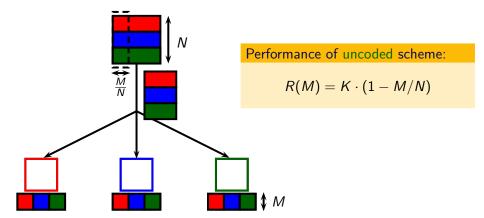




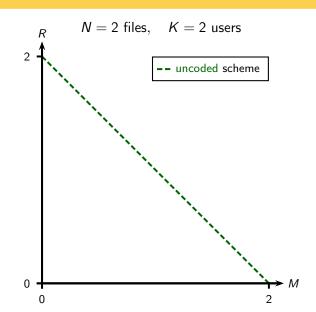


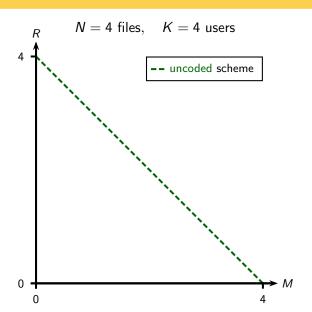


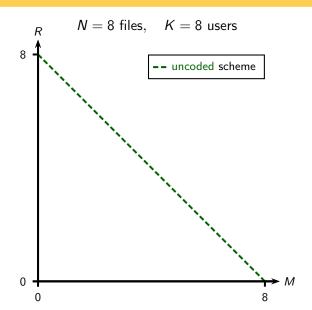


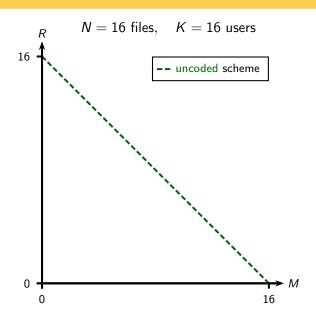


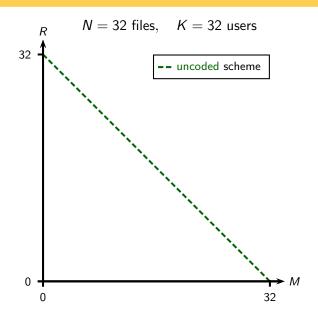
- lacktriangle Caches provide content locally \Rightarrow local cache size matters
- Identical cache content at users

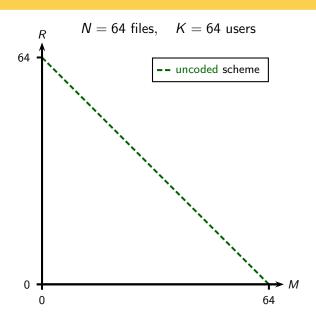


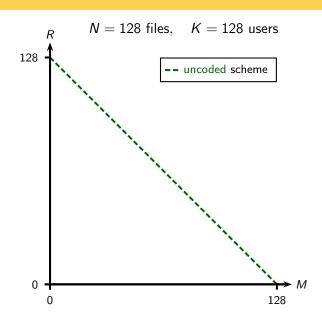


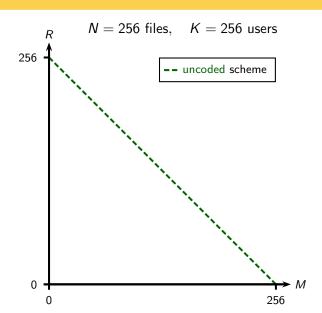


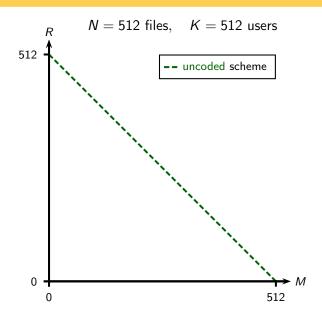












Proposed Coded Caching Scheme N files, K users, cache size M

- Design guidelines advocated in this talk:

 The main gain in caching is global
 - Global cache size matters
 - Different cache content at users
 - Coded multicasting

N files, K users, cache size M

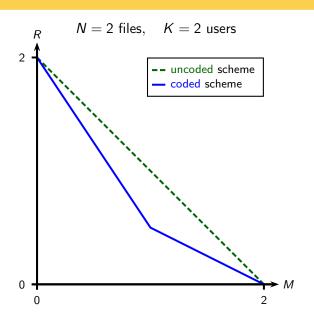
Design guidelines advocated in this talk:

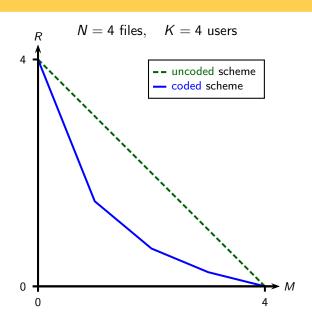
- The main gain in caching is global
- Global cache size matters
- Different cache content at users
- Coded multicasting

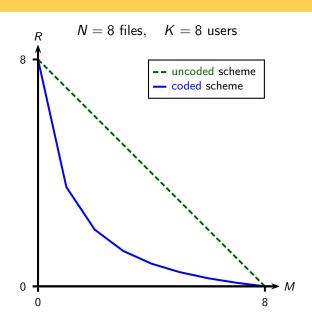
Performance of coded scheme:²

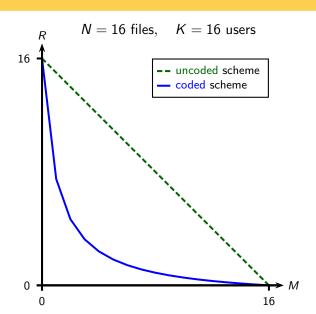
$$R(M) = K \cdot (1 - M/N) \cdot \frac{1}{1 + KM/N}$$

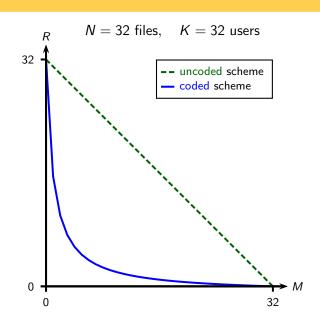
²M. A. Maddah-Ali and U. Niesen, "Fundamental limits of caching," *IEEE Trans. Inf. Theory*, vol. 60, no. 5, pp. 2856–2867, May 2014.

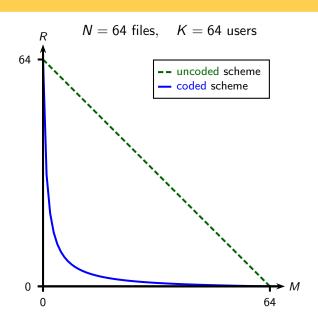


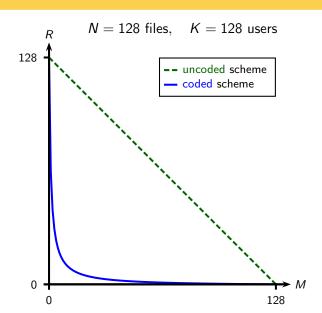


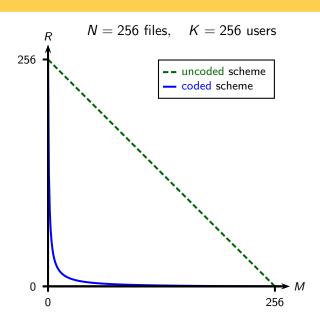


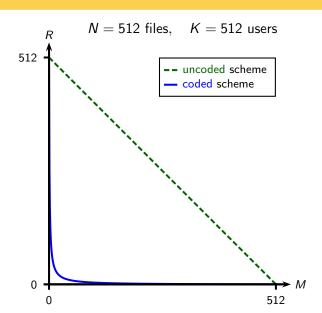


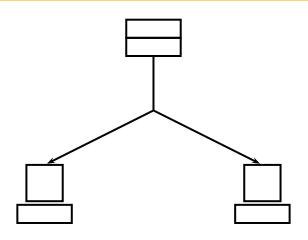


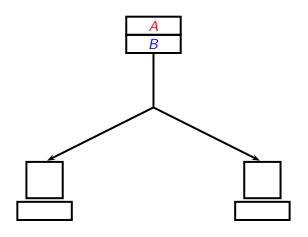


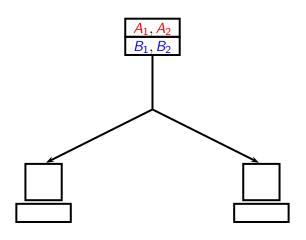


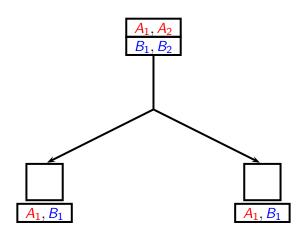


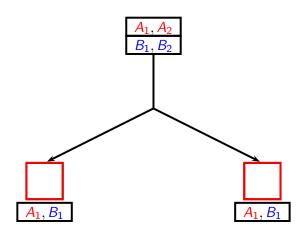


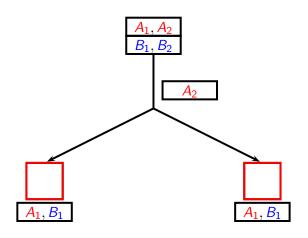


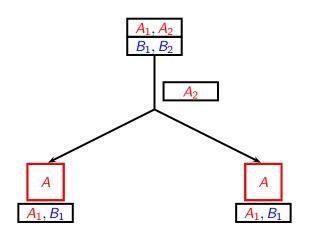


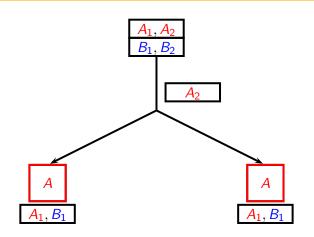




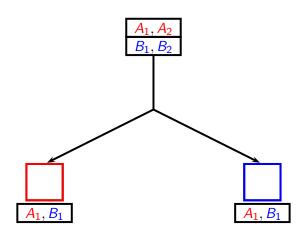


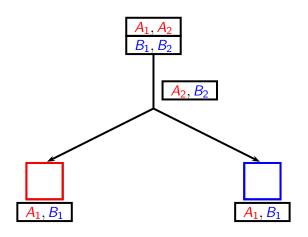


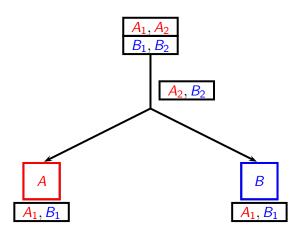




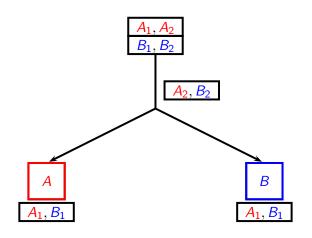
- ⇒ Identical cache content at users
- ⇒ Gain from delivering content locally





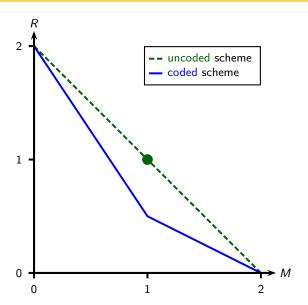


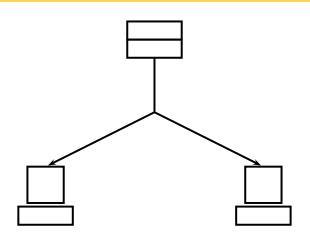
N=2 files, K=2 users, cache size M=1

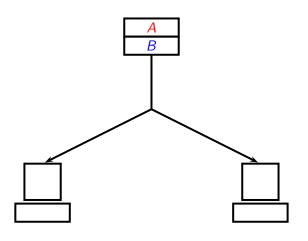


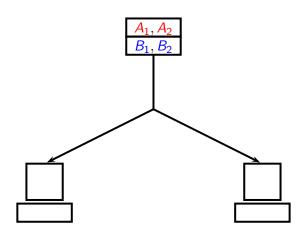
 \Rightarrow Multicast only possible for users with same demand

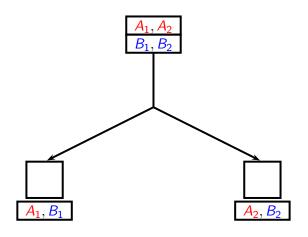
Recall: Uncoded Scheme N = 2 files, K = 2 users, cache size M = 1

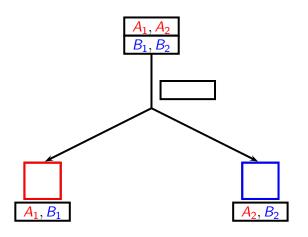


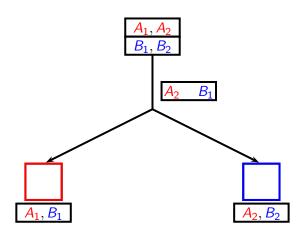


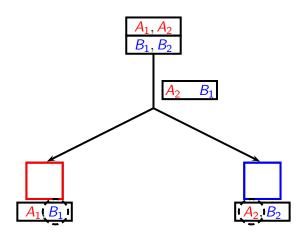


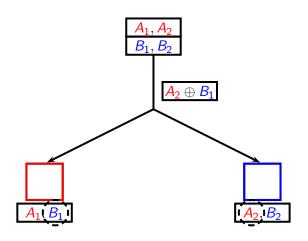


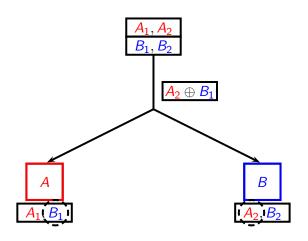


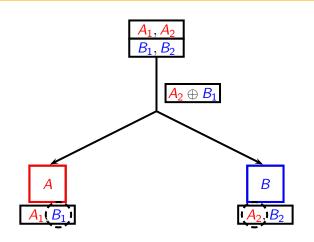




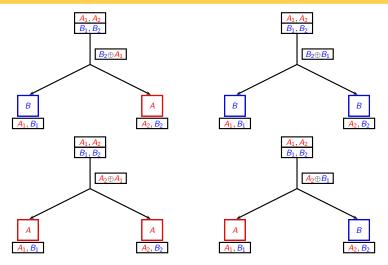






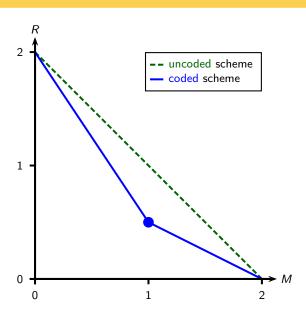


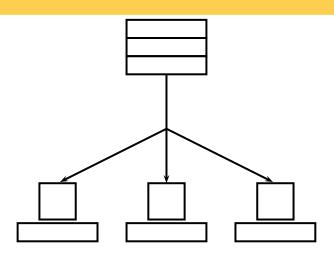
- ⇒ Different cache content at users
- ⇒ Coded multicast to 2 users with different demands

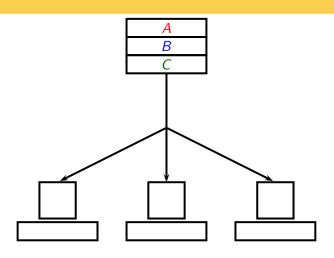


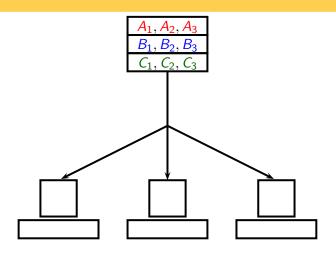
- ⇒ Works for all possible user requests
- ⇒ Simultaneous coded multicasting gain

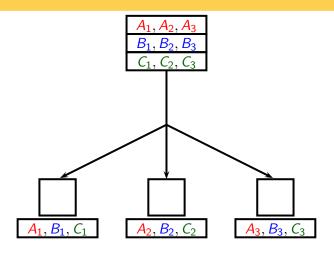
Proposed Coded Scheme N = 2 files, K = 2 users, cache size M = 1

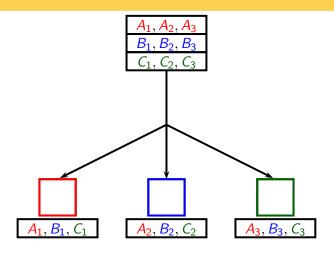


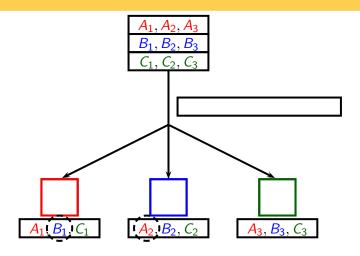


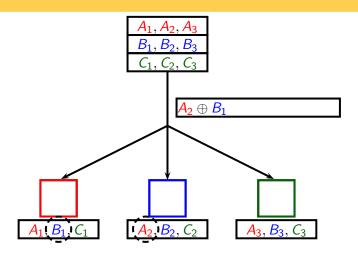


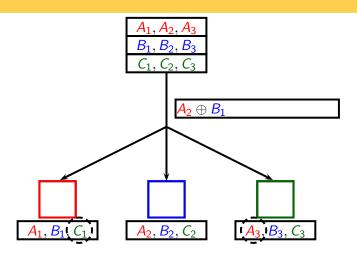


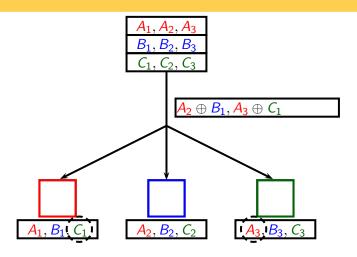


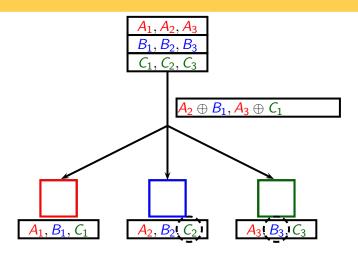


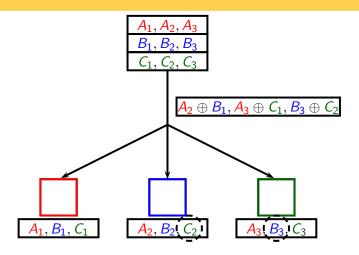


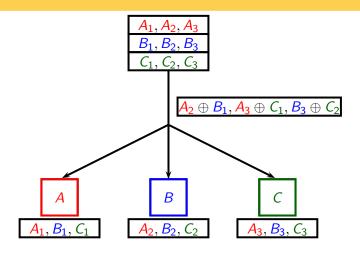




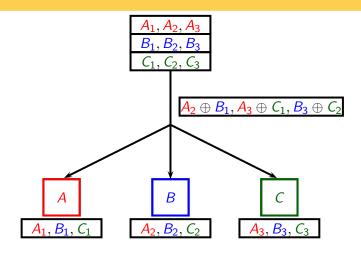




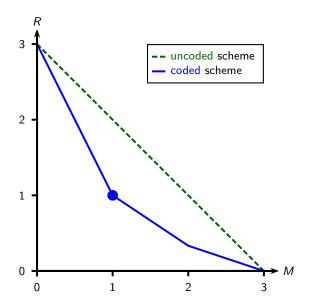


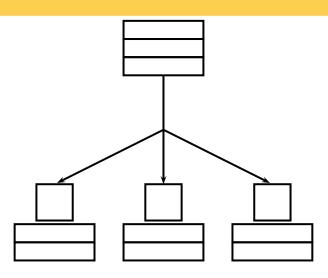


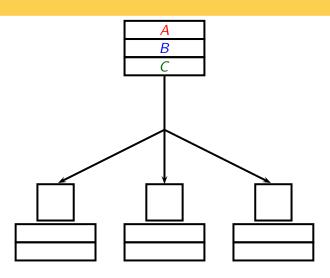
N=3 files, K=3 users, cache size M=1

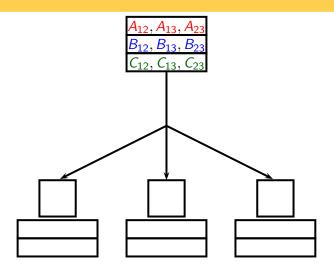


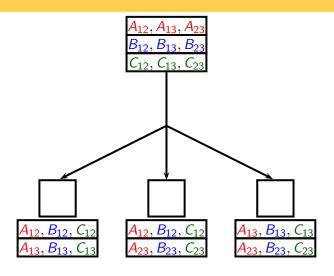
⇒ Coded multicast to 2 users with different demands

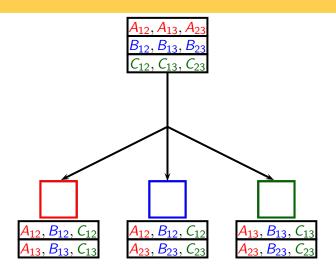


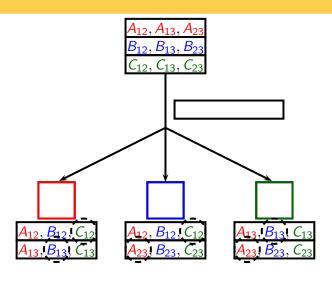


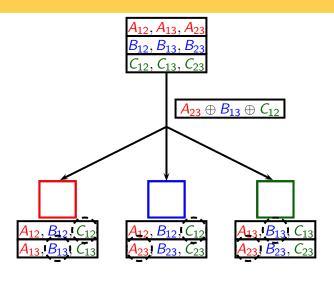


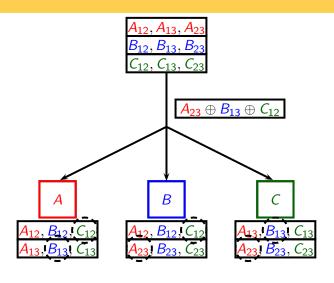




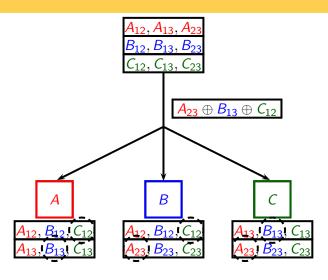






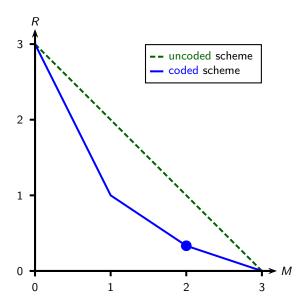


N=3 files, K=3 users, cache size M=2



⇒ Coded multicast to 3 users with different demands

Proposed Coded Scheme N = 3 files, K = 3 users, cache size M = 2

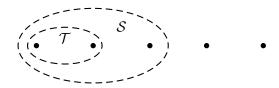


Proposed Coded Scheme N = K files and users, cache size M

■ Goal: coded multicast to M + 1 users with different demands

N = K files and users, cache size M

- Goal: coded multicast to M + 1 users with different demands
- Need to place content such that in delivery phase:
 - 1 for every possible user demands...
 - **2** and for every possible subset S of M+1 users...
 - 3 and for every possible subset $\mathcal{T} \subset \mathcal{S}$ of M users. . .
 - 4 users in ${\mathcal T}$ share content that is required at the user in ${\mathcal S} \setminus {\mathcal T}$



N = K files and users, cache size M

- Goal: coded multicast to M + 1 users with different demands
- Need to place content such that in delivery phase:
 - 1 for every possible user demands...
 - 2 and for every possible subset S of M+1 users. . .
 - 3 and for every possible subset $\mathcal{T} \subset \mathcal{S}$ of M users. . .
 - 4 users in ${\mathcal T}$ share content that is required at the user in ${\mathcal S} \setminus {\mathcal T}$

Example: N = K = 3, M = 2

Every two users have a piece of content the remaining user needs

Proposed Coded Scheme N = K files and users, cache size M

Placement phase:

Placement phase:

■ N files: $W_1, ..., W_N$

Placement phase:

- \blacksquare N files: W_1, \ldots, W_N
- Split each file into $\binom{K}{M}$ parts

$$\Rightarrow$$
 $W_n = (W_{n,\mathcal{T}} : \mathcal{T} \subset [K], |\mathcal{T}| = M)$

Proposed Coded Scheme

 $N = \dot{K}$ files and users, cache size M

Placement phase:

- \blacksquare N files: W_1, \ldots, W_N
- Split each file into $\binom{K}{M}$ parts

$$\Rightarrow \ W_n = \big(W_{n,\mathcal{T}}: \mathcal{T} \subset [K], |\mathcal{T}| = M\big)$$

■ Cache k: $(W_{n,\mathcal{T}}: n \in [N], \mathcal{T} \subset [K], |\mathcal{T}| = M, k \in \mathcal{T})$

Proposed Coded Scheme

N = K files and users, cache size M

Placement phase:

- N files: W_1, \ldots, W_N
- Split each file into $\binom{K}{M}$ parts $\Rightarrow W_n = (W_{n,T} : T \subset [K], |T| = M)$
- Cache k: $(W_{n,\mathcal{T}}: n \in [N], \mathcal{T} \subset [K], |\mathcal{T}| = M, k \in \mathcal{T})$

Example:
$$N = K = 3$$
, $M = 2$

Consider files $A, B, C \Rightarrow \text{ cache 2: } (A_{12}, A_{23}, B_{12}, B_{23}, C_{12}, C_{23})$

Delivery phase:

Delivery phase: Assume users k requests W_{d_k}

Delivery phase: Assume users k requests W_{d_k}

lacksquare Send $\oplus_{k\in\mathcal{S}}W_{d_k,\mathcal{S}\setminus\{k\}}$ for all $\mathcal{S}\subset[K]$ such that $|\mathcal{S}|=M+1$

Delivery phase: Assume users k requests W_{d_k}

- lacksquare Send $\oplus_{k\in\mathcal{S}}W_{d_k,\mathcal{S}\setminus\{k\}}$ for all $\mathcal{S}\subset[\mathcal{K}]$ such that $|\mathcal{S}|=M+1$
- Coded multicast to M + 1 users with different demands

Delivery phase: Assume users k requests W_{d_k}

- lacksquare Send $\oplus_{k\in\mathcal{S}}W_{d_k,\mathcal{S}\setminus\{k\}}$ for all $\mathcal{S}\subset[K]$ such that $|\mathcal{S}|=M+1$
- Coded multicast to M + 1 users with different demands

Example:
$$N = K = 3$$
, $M = 1$

Consider files A, B, C and user requests $d_1 = A, d_2 = B, d_3 = C$

 \Rightarrow Server sends $A_2 \oplus B_1$, $A_3 \oplus C_1$, $B_3 \oplus C_2$

Comparison of the Two Schemes N files, K users, cache size M

- Uncoded scheme: $R(M) = K \cdot (1 M/N)$
- Coded scheme: $R(M) = K \cdot (1 M/N) \cdot \frac{1}{1 + KM/N}$

Comparison of the Two Schemes N files, K users, cache size M

- Uncoded scheme: $R(M) = K \cdot (1 M/N)$
- Coded scheme: $R(M) = \frac{K}{K} \cdot (1 M/N) \cdot \frac{1}{1 + KM/N}$

■ Rate without caching *K*

Comparison of the Two Schemes

N files, K users, cache size M

- Uncoded scheme: $R(M) = K \cdot (1 M/N)$
- Coded scheme: $R(M) = K \cdot (1 M/N) \cdot \frac{1}{1 + KM/N}$

- Rate without caching *K*
- Local caching gain 1 M/N
 - \blacksquare Significant when local cache size M is of order N

Comparison of the Two Schemes

N files, K users, cache size M

- Uncoded scheme: $R(M) = K \cdot (1 M/N)$
- Coded scheme: $R(M) = K \cdot (1 M/N) \cdot \frac{1}{1 + KM/N}$

- Rate without caching *K*
- Local caching gain 1 M/N
 - lacksquare Significant when local cache size M is of order N
- Global caching gain $\frac{1}{1+KM/N}$
 - Significant when global cache size *KM* is of order *N*

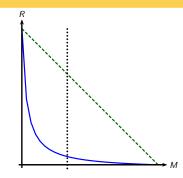
Comparison of the Two Schemes

N files, K users, cache size M

- Uncoded scheme: $R(M) = K \cdot (1 M/N)$
- Coded scheme: $R(M) = K \cdot (1 M/N) \cdot \frac{1}{1 + KM/N}$

- Rate without caching *K*
- Local caching gain 1 M/N
 - lacksquare Significant when local cache size M is of order N
- Global caching gain $\frac{1}{1+KM/N}$
 - Significant when global cache size *KM* is of order *N*
- \Rightarrow Global gain can be $\Theta(K)$ smaller than local gain

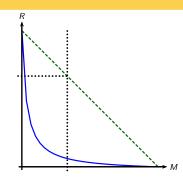
N = 30 files, K = 30 users, cache size M = 10



$$N = 30$$
 files, $K = 30$ users, cache size $M = 10$

■ Uncoded scheme:

$$R(M) = K \cdot (1 - M/N)$$
$$\approx 30 \cdot 0.67 \approx 20$$



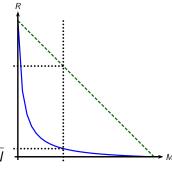
$$N = 30$$
 files, $K = 30$ users, cache size $M = 10$

Uncoded scheme:

$$R(M) = K \cdot (1 - M/N)$$
$$\approx 30 \cdot 0.67 \approx 20$$

■ Coded scheme:

$$R(M) = K \cdot (1 - M/N) \cdot \frac{1}{1 + KM/N}$$
$$\approx 30 \cdot 0.67 \cdot 0.09 \approx 1.8$$



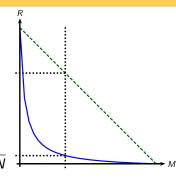
$$N = 30$$
 files, $K = 30$ users, cache size $M = 10$

Uncoded scheme:

$$R(M) = K \cdot (1 - M/N)$$
$$\approx 30 \cdot 0.67 \approx 20$$

■ Coded scheme:

$$R(M) = K \cdot (1 - M/N) \cdot \frac{1}{1 + KM/N}$$
$$\approx 30 \cdot 0.67 \cdot 0.09 \approx 1.8$$



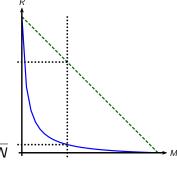
$$N = 30$$
 files, $K = 30$ users, cache size $M = 10$

■ Uncoded scheme:

$$R(M) = K \cdot (1 - M/N)$$
$$\approx 30 \cdot 0.67 \approx 20$$

■ Coded scheme:

$$R(M) = K \cdot (1 - M/N) \cdot \frac{1}{1 + KM/N}$$
$$\approx 30 \cdot 0.67 \cdot 0.09 \approx 1.8$$



- ⇒ Factor 11 reduction in rate!
- \Rightarrow Local gain is 0.67

$$N = 30$$
 files, $K = 30$ users, cache size $M = 10$

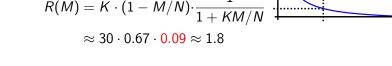
Uncoded scheme:

$$R(M) = K \cdot (1 - M/N)$$
$$\approx 30 \cdot 0.67 \approx 20$$

Coded scheme:

$$R(M) = K \cdot (1 - M/N) \cdot \frac{1}{1 + KM/N}$$

$$\approx 30 \cdot 0.67 \cdot 0.09 \approx 1.8$$



- ⇒ Factor 11 reduction in rate!
- \Rightarrow Local gain is 0.67
- \Rightarrow Global gain is 0.09 (coded multicast to M+1=11 users with different demands)

Theorem

The coded scheme is optimal to within a constant factor in rate.³

³M. A. Maddah-Ali and U. Niesen, "Fundamental limits of caching," *IEEE Trans. Inf. Theory*, vol. 60, no. 5, pp. 2856–2867, May 2014.

Theorem

The coded scheme is optimal to within a constant factor in rate.³

⇒ Information-theoretic bound

³M. A. Maddah-Ali and U. Niesen, "Fundamental limits of caching," *IEEE Trans. Inf. Theory*, vol. 60, no. 5, pp. 2856–2867, May 2014.

Theorem

The coded scheme is optimal to within a constant factor in rate.³

- ⇒ Information-theoretic bound
- \Rightarrow Constant is independent of problem parameters N, K, M

³M. A. Maddah-Ali and U. Niesen, "Fundamental limits of caching," *IEEE Trans. Inf. Theory*, vol. 60, no. 5, pp. 2856–2867, May 2014.

Theorem

The coded scheme is optimal to within a constant factor in rate.³

- ⇒ Information-theoretic bound
- \Rightarrow Constant is independent of problem parameters N, K, M
- ⇒ No other significant gain besides local and global

³M. A. Maddah-Ali and U. Niesen, "Fundamental limits of caching," *IEEE Trans. Inf. Theory*, vol. 60, no. 5, pp. 2856–2867, May 2014.

Approach Can be Adapted to Handle...

- Asynchronous user requests⁴
- Nonuniform file popularities⁵
- Users joining and leaving the network⁶
- Several users sharing a cache⁷
- Online cache updates⁸
- More complicated network topologies⁹

⁴Niesen and Maddah-Ali 2015.

 $^{^5}$ Niesen and Maddah-Ali 2017; Ji, Tulino, Llorca, and Caire 2017; Zhang, Lin, and Wang 2018.

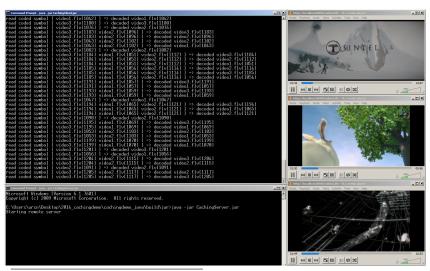
⁶Maddah-Ali and Niesen 2015.

⁷Hachem, Karamchandani, and Diggavi 2017.

⁸Pedarsani, Maddah-Ali, and Niesen 2016.

⁹Karamchandani, Niesen, Maddah-Ali, and Diggavi 2016; Ji, Caire, and Molisch 2016.

Video Streaming Demo¹⁰



¹⁰U. Niesen and M. A. Maddah-Ali, "Coded caching for delay-sensitive content." in *Proc. IEEE ICC*, Jun. 2015, pp. 5559–5564.

■ File size scaling:

- File size scaling:
 - Described approach requires file size scaling like $\binom{K}{KM/N}$
 - lacksquare Scales poorly with number of users K

- File size scaling:
 - Described approach requires file size scaling like $\binom{K}{KM/N}$
 - lacksquare Scales poorly with number of users K
 - Promising recent results with interesting connection to graph theory¹¹, but scope for more work

 $^{^{11}\}text{K.}$ Shanmugam, A. M. Tulino, and A. G. Dimakis, "Coded caching with linear subpacketization is possible using Rusza-Szemeredi graphs," in *Proc. IEEE ISIT*, Jun. 2017, pp. 2157–8117

- File size scaling:
 - Described approach requires file size scaling like $\binom{K}{KM/N}$
 - Scales poorly with number of users *K*
 - Promising recent results with interesting connection to graph theory¹¹, but scope for more work
- State:

 $^{^{11}\}rm{K}.$ Shanmugam, A. M. Tulino, and A. G. Dimakis, "Coded caching with linear subpacketization is possible using Rusza-Szemeredi graphs," in *Proc. IEEE ISIT*, Jun. 2017, pp. 2157–8117

- File size scaling:
 - Described approach requires file size scaling like $\binom{K}{KM/N}$
 - Scales poorly with number of users K
 - Promising recent results with interesting connection to graph theory¹¹, but scope for more work
- State:
 - Standard caching schemes only require knowledge of local state
 - In contrast coded caching requires the server to have knowledge of global state

 $^{^{11}}$ K. Shanmugam, A. M. Tulino, and A. G. Dimakis, "Coded caching with linear subpacketization is possible using Rusza-Szemeredi graphs," in *Proc. IEEE ISIT*, Jun. 2017, pp. 2157–8117

- File size scaling:
 - Described approach requires file size scaling like $\binom{K}{KM/N}$
 - Scales poorly with number of users *K*
 - Promising recent results with interesting connection to graph theory¹¹, but scope for more work
- State:
 - Standard caching schemes only require knowledge of local state
 - In contrast coded caching requires the server to have knowledge of global state
- Large scale implementation:

 $^{^{11} \}rm K.$ Shanmugam, A. M. Tulino, and A. G. Dimakis, "Coded caching with linear subpacketization is possible using Rusza-Szemeredi graphs," in *Proc. IEEE ISIT*, Jun. 2017, pp. 2157–8117

- File size scaling:
 - Described approach requires file size scaling like $\binom{K}{KM/N}$
 - Scales poorly with number of users K
 - Promising recent results with interesting connection to graph theory¹¹, but scope for more work

State:

- Standard caching schemes only require knowledge of local state
- In contrast coded caching requires the server to have knowledge of global state
- Large scale implementation:
 - So far only demo-sized implementation
 - Experimentation with large-scale systems are needed

 $^{^{11}}$ K. Shanmugam, A. M. Tulino, and A. G. Dimakis, "Coded caching with linear subpacketization is possible using Rusza-Szemeredi graphs," in *Proc. IEEE ISIT*, Jun. 2017, pp. 2157–8117

Conclusions

A New Approach to Caching

Conclusions A New Approach to Caching

- Main gain in caching is global
 - ⇒ Coded multicast to users with different demands

Conclusions A New Approach to Caching

- Main gain in caching is global
 - ⇒ Coded multicast to users with different demands
- Global cache size matters

Conclusions A New Approach to Caching

- Main gain in caching is global
 - ⇒ Coded multicast to users with different demands
- Global cache size matters
- Statistically identical users ⇒ different cache content

Conclusions A New Approach to Caching

- Main gain in caching is global
 - ⇒ Coded multicast to users with different demands
- Global cache size matters
- Statistically identical users ⇒ different cache content
- Significant improvement over uncoded caching schemes
 - ⇒ Reduction in rate up to order of number of users

Conclusions A New Approach to Caching

- Main gain in caching is global
 - ⇒ Coded multicast to users with different demands
- Global cache size matters
- Statistically identical users ⇒ different cache content
- Significant improvement over uncoded caching schemes
 - ⇒ Reduction in rate up to order of number of users
- Key open questions: block length, state, large-scale implementation

References I

- Cisco, "The Zettabyte era: Trends and analysis," Tech. Rep., Jun. 2017.
- M. A. Maddah-Ali and U. Niesen, "Fundamental limits of caching," *IEEE Trans. Inf. Theory*, vol. 60, no. 5, pp. 2856–2867, May 2014.
- U. Niesen and M. A. Maddah-Ali, "Coded caching for delay-sensitive content," in *Proc. IEEE ICC*, Jun. 2015, pp. 5559–5564.
- —, "Coded caching with nonuniform demands," *IEEE Trans. Inf. Theory*, vol. 63, pp. 1146–1158, Feb. 2017.
- M. Ji, A. M. Tulino, J. Llorca, and G. Caire, "Order-optimal rate of caching and coded multicasting with random demands," *IEEE Trans. Inf. Theory*, vol. 63, pp. 3923–3949, Apr. 2017.

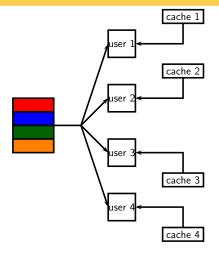
References II

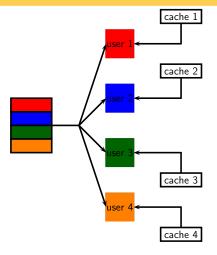
- J. Zhang, X. Lin, and X. Wang, "Coded caching under arbitrary popularity distributions," *IEEE Trans. Inf. Theory*, vol. 64, pp. 98–107, Jan. 2018.
- M. A. Maddah-Ali and U. Niesen, "Decentralized coded caching attains order-optimal memory-rate tradeoff," *IEEE/ACM Trans. Netw.*, vol. 23, pp. 1029–1040, Aug. 2015.
- J. Hachem, N. Karamchandani, and S. Diggavi, "Coded caching for multi-level popularity and access," *IEEE Trans. Inf. Theory*, vol. 63, pp. 3108–3141, May 2017.
- R. Pedarsani, M. A. Maddah-Ali, and U. Niesen, "Online coded caching," *IEEE/ACM Trans. Netw.*, vol. 24, pp. 836–845, Apr. 2016.
- N. Karamchandani, U. Niesen, M. A. Maddah-Ali, and S. Diggavi, "Hierarchical coded caching," *IEEE Trans. Inf. Theory*, vol. 62, pp. 3212–3229, Jun. 2016.

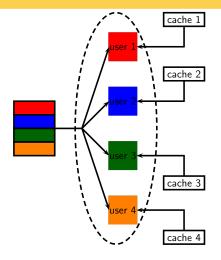
References III

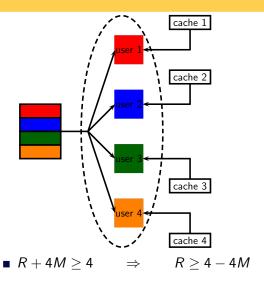
M. Ji, G. Caire, and A. F. Molisch, "Fundamental limits of caching in wireless D2D networks," *IEEE Trans. Inf. Theory*, vol. 62, no. 2, pp. 849–869, Feb. 2016.

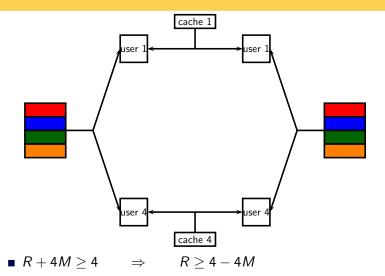
K. Shanmugam, A. M. Tulino, and A. G. Dimakis, "Coded caching with linear subpacketization is possible using Rusza-Szemeredi graphs," in *Proc. IEEE ISIT*, Jun. 2017, pp. 2157–8117.

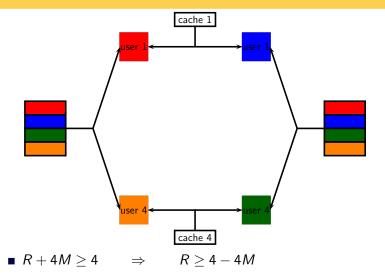


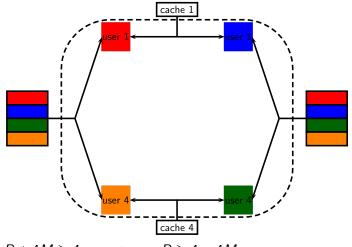






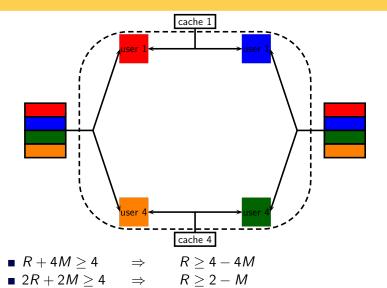


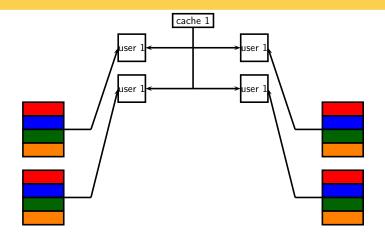




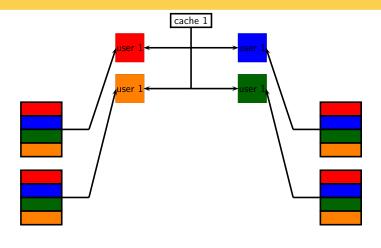
 $\blacksquare R + 4M \ge 4 \Rightarrow$

 $R \ge 4 - 4M$

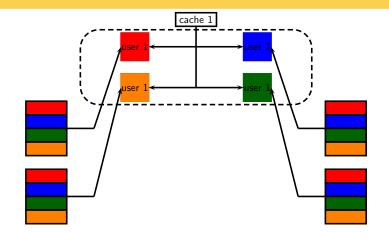




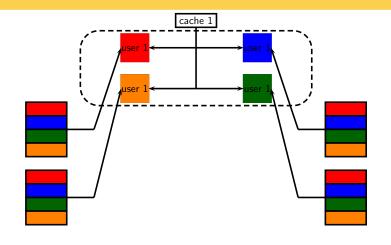
- $R + 4M \ge 4$ \Rightarrow $R \ge 4 4M$ $2R + 2M \ge 4$ \Rightarrow $R \ge 2 M$



- $R + 4M \ge 4$ \Rightarrow $R \ge 4 4M$ $2R + 2M \ge 4$ \Rightarrow $R \ge 2 M$



- $R + 4M \ge 4$ \Rightarrow $R \ge 4 4M$ $2R + 2M \ge 4$ \Rightarrow $R \ge 2 M$



■
$$R + 4M \ge 4$$
 \Rightarrow $R \ge 4 - 4M$
■ $2R + 2M \ge 4$ \Rightarrow $R \ge 2 - M$
■ $4R + M \ge 4$ \Rightarrow $R \ge 1 - M/4$

$$2R + 2M \ge 4 \Rightarrow R \ge 2 - M$$

■
$$4R + M \ge 4$$
 \Rightarrow $R \ge 1 - M$

■ This can be rewritten as

$$R \ge \max\{4 - 4M, 2 - M, 1 - M/4\}$$

■ This can be rewritten as

$$R \ge \max\{4 - 4M, 2 - M, 1 - M/4\}$$

For general N and K

$$R \ge \max_{s} \left(s - \frac{s}{\lfloor N/s \rfloor} M \right)$$

■ Comparing with achievable rate yields the theorem