
Coded Caching for Content Distribution

Urs Niesen

MobiHoc 2018

Importance of Content Distribution

Video on demand is driving network traffic growth

Netflix streaming service, Amazon Prime Video, Hulu, Verizon
/ Comcast on Demand, . . .

IP video traffic is predicted to make up 82% of all IP traffic by
20211

1Cisco, “The Zettabyte era: Trends and analysis,” Tech. Rep., Jun. 2017.

Importance of Content Distribution

Video on demand is driving network traffic growth

Netflix streaming service, Amazon Prime Video, Hulu, Verizon
/ Comcast on Demand, . . .

IP video traffic is predicted to make up 82% of all IP traffic by
20211

Places significant stress on service provider’s networks

1Cisco, “The Zettabyte era: Trends and analysis,” Tech. Rep., Jun. 2017.

Importance of Content Distribution

Video on demand is driving network traffic growth

Netflix streaming service, Amazon Prime Video, Hulu, Verizon
/ Comcast on Demand, . . .

IP video traffic is predicted to make up 82% of all IP traffic by
20211

Places significant stress on service provider’s networks

Caching (prefetching) can be used to mitigate this stress

1Cisco, “The Zettabyte era: Trends and analysis,” Tech. Rep., Jun. 2017.

Caching (Prefetching)

0

20

40

60

80

100

0 6 12 18 24

time of day

n
o
rm

a
li
ze
d
d
em

a
n
d

Caching (Prefetching)

0

20

40

60

80

100

0 6 12 18 24

time of day

n
o
rm

a
li
ze
d
d
em

a
n
d

High temporal traffic variability

Caching (Prefetching)

0

20

40

60

80

100

0 6 12 18 24

time of day

n
o
rm

a
li
ze
d
d
em

a
n
d

High temporal traffic variability

Caching can help smooth traffic

Caching (Prefetching)

Caching (Prefetching)

Placement phase (5am): Populate caches

Caching (Prefetching)

Placement phase (5am): Populate caches

Delivery phase (8pm): Request and deliver movies

The Role of Caching

Conventional beliefs about caching:

The Role of Caching

Conventional beliefs about caching:

Caches useful to deliver content locally

The Role of Caching

Conventional beliefs about caching:

Caches useful to deliver content locally

Local cache size matters

The Role of Caching

Conventional beliefs about caching:

Caches useful to deliver content locally

Local cache size matters

Statistically identical users ⇒ identical cache content

The Role of Caching

Conventional beliefs about caching:

Caches useful to deliver content locally

Local cache size matters

Statistically identical users ⇒ identical cache content

This talk will argue:

The Role of Caching

Conventional beliefs about caching:

Caches useful to deliver content locally

Local cache size matters

Statistically identical users ⇒ identical cache content

This talk will argue:

The main gain in caching is global

The Role of Caching

Conventional beliefs about caching:

Caches useful to deliver content locally

Local cache size matters

Statistically identical users ⇒ identical cache content

This talk will argue:

The main gain in caching is global

Global cache size matters

The Role of Caching

Conventional beliefs about caching:

Caches useful to deliver content locally

Local cache size matters

Statistically identical users ⇒ identical cache content

This talk will argue:

The main gain in caching is global

Global cache size matters

Statistically identical users ⇒ different cache content

The Role of Caching

Conventional beliefs about caching:

Caches useful to deliver content locally

Local cache size matters

Statistically identical users ⇒ identical cache content

This talk will argue:

The main gain in caching is global

Global cache size matters

Statistically identical users ⇒ different cache content

Coded multicasting as key enabler

Problem Setting

K users

caches

server

shared (broadcast) link

Problem Setting

K users

caches

server N files, N ≥ K for simplicity

shared (broadcast) link

Problem Setting

K users

caches size M

server N files

shared (broadcast) link

Problem Setting

K users

caches size M

server N files

shared (broadcast) link

Placement: cache arbitrary function of files (linear, nonlinear, . . .)

Problem Setting

K users

caches size M

server N files

shared (broadcast) link

Delivery:

Problem Setting

K users

caches size M

server N files

shared (broadcast) link

Delivery: - requests are revealed to server

Problem Setting

K users

caches size M

server N files

shared (broadcast) link

Delivery: - requests are revealed to server

- server sends arbitrary function of files

Problem Setting

K users

caches size M

server N files

shared (broadcast) link

Delivery: - requests are revealed to server

- server sends arbitrary function of files

Problem Setting

K users

caches size M

server N files

shared (broadcast) link

Question: smallest worst-case rate R(M) needed in delivery phase?

Uncoded Caching Scheme
N files, K users, cache size M

M

N

Uncoded Caching Scheme
N files, K users, cache size M

M

N

M

N

Uncoded Caching Scheme
N files, K users, cache size M

M

N

M

N

Uncoded Caching Scheme
N files, K users, cache size M

M

N

M

N

Uncoded Caching Scheme
N files, K users, cache size M

M

N

M

N

Uncoded Caching Scheme
N files, K users, cache size M

M

N

M

N

Performance of uncoded scheme:

R(M) = K · (1−M/N)

Uncoded Caching Scheme
N files, K users, cache size M

M

N

M

N

Performance of uncoded scheme:

R(M) = K · (1−M/N)

Caches provide content locally ⇒ local cache size matters

Identical cache content at users

Uncoded Caching Scheme

N = 2 files, K = 2 users

0

2

0 2

M

R

uncoded scheme

Uncoded Caching Scheme

N = 4 files, K = 4 users

0

4

0 4

M

R

uncoded scheme

Uncoded Caching Scheme

N = 8 files, K = 8 users

0

8

0 8

M

R

uncoded scheme

Uncoded Caching Scheme

N = 16 files, K = 16 users

0

16

0 16

M

R

uncoded scheme

Uncoded Caching Scheme

N = 32 files, K = 32 users

0

32

0 32

M

R

uncoded scheme

Uncoded Caching Scheme

N = 64 files, K = 64 users

0

64

0 64

M

R

uncoded scheme

Uncoded Caching Scheme

N = 128 files, K = 128 users

0

128

0 128

M

R

uncoded scheme

Uncoded Caching Scheme

N = 256 files, K = 256 users

0

256

0 256

M

R

uncoded scheme

Uncoded Caching Scheme

N = 512 files, K = 512 users

0

512

0 512

M

R

uncoded scheme

Proposed Coded Caching Scheme
N files, K users, cache size M

Design guidelines advocated in this talk:

The main gain in caching is global

Global cache size matters

Different cache content at users

Coded multicasting

2M. A. Maddah-Ali and U. Niesen, “Fundamental limits of caching,” IEEE

Trans. Inf. Theory, vol. 60, no. 5, pp. 2856–2867, May 2014.

Proposed Coded Caching Scheme
N files, K users, cache size M

Design guidelines advocated in this talk:

The main gain in caching is global

Global cache size matters

Different cache content at users

Coded multicasting

Performance of coded scheme:2

R(M) = K · (1−M/N) ·
1

1 + KM/N

2M. A. Maddah-Ali and U. Niesen, “Fundamental limits of caching,” IEEE

Trans. Inf. Theory, vol. 60, no. 5, pp. 2856–2867, May 2014.

Proposed Coded Caching Scheme

N = 2 files, K = 2 users

0

2

0 2

M

R

uncoded scheme

coded scheme

Proposed Coded Caching Scheme

N = 4 files, K = 4 users

0

4

0 4

M

R

uncoded scheme

coded scheme

Proposed Coded Caching Scheme

N = 8 files, K = 8 users

0

8

0 8

M

R

uncoded scheme

coded scheme

Proposed Coded Caching Scheme

N = 16 files, K = 16 users

0

16

0 16

M

R

uncoded scheme

coded scheme

Proposed Coded Caching Scheme

N = 32 files, K = 32 users

0

32

0 32

M

R

uncoded scheme

coded scheme

Proposed Coded Caching Scheme

N = 64 files, K = 64 users

0

64

0 64

M

R

uncoded scheme

coded scheme

Proposed Coded Caching Scheme

N = 128 files, K = 128 users

0

128

0 128

M

R

uncoded scheme

coded scheme

Proposed Coded Caching Scheme

N = 256 files, K = 256 users

0

256

0 256

M

R

uncoded scheme

coded scheme

Proposed Coded Caching Scheme

N = 512 files, K = 512 users

0

512

0 512

M

R

uncoded scheme

coded scheme

Recall: Uncoded Scheme
N = 2 files, K = 2 users, cache size M = 1

Recall: Uncoded Scheme
N = 2 files, K = 2 users, cache size M = 1

B
A

Recall: Uncoded Scheme
N = 2 files, K = 2 users, cache size M = 1

B1,B2

A1,A2

Recall: Uncoded Scheme
N = 2 files, K = 2 users, cache size M = 1

A1,B1 A1,B1

B1,B2

A1,A2

Recall: Uncoded Scheme
N = 2 files, K = 2 users, cache size M = 1

A1,B1 A1,B1

B1,B2

A1,A2

Recall: Uncoded Scheme
N = 2 files, K = 2 users, cache size M = 1

A1,B1 A1,B1

B1,B2

A1,A2

A2

Recall: Uncoded Scheme
N = 2 files, K = 2 users, cache size M = 1

A

A1,B1

A

A1,B1

B1,B2

A1,A2

A2

Recall: Uncoded Scheme
N = 2 files, K = 2 users, cache size M = 1

A

A1,B1

A

A1,B1

B1,B2

A1,A2

A2

⇒ Identical cache content at users

⇒ Gain from delivering content locally

Recall: Uncoded Scheme
N = 2 files, K = 2 users, cache size M = 1

A1,B1 A1,B1

B1,B2

A1,A2

Recall: Uncoded Scheme
N = 2 files, K = 2 users, cache size M = 1

A1,B1 A1,B1

B1,B2

A1,A2

A2,B2

Recall: Uncoded Scheme
N = 2 files, K = 2 users, cache size M = 1

A

A1,B1

B

A1,B1

B1,B2

A1,A2

A2,B2

Recall: Uncoded Scheme
N = 2 files, K = 2 users, cache size M = 1

A

A1,B1

B

A1,B1

B1,B2

A1,A2

A2,B2

⇒ Multicast only possible for users with same demand

Recall: Uncoded Scheme
N = 2 files, K = 2 users, cache size M = 1

0

1

2

0 1 2

M

R

uncoded scheme

coded scheme

Proposed Coded Scheme
N = 2 files, K = 2 users, cache size M = 1

Proposed Coded Scheme
N = 2 files, K = 2 users, cache size M = 1

B
A

Proposed Coded Scheme
N = 2 files, K = 2 users, cache size M = 1

B1,B2

A1,A2

Proposed Coded Scheme
N = 2 files, K = 2 users, cache size M = 1

A1,B1 A2,B2

B1,B2

A1,A2

Proposed Coded Scheme
N = 2 files, K = 2 users, cache size M = 1

A1,B1 A2,B2

B1,B2

A1,A2

Proposed Coded Scheme
N = 2 files, K = 2 users, cache size M = 1

A1,B1 A2,B2

B1,B2

A1,A2

A2 B1

Proposed Coded Scheme
N = 2 files, K = 2 users, cache size M = 1

A1,B1 A2,B2

B1,B2

A1,A2

A2 B1

Proposed Coded Scheme
N = 2 files, K = 2 users, cache size M = 1

A1,B1 A2,B2

B1,B2

A1,A2

A2 ⊕ B1

Proposed Coded Scheme
N = 2 files, K = 2 users, cache size M = 1

A

A1,B1

B

A2,B2

B1,B2

A1,A2

A2 ⊕ B1

Proposed Coded Scheme
N = 2 files, K = 2 users, cache size M = 1

A

A1,B1

B

A2,B2

B1,B2

A1,A2

A2 ⊕ B1

⇒ Different cache content at users

⇒ Coded multicast to 2 users with different demands

Proposed Coded Scheme
N = 2 files, K = 2 users, cache size M = 1

A

A1,B1

A

A2,B2

B1,B2

A1,A2

A2⊕A1

A

A1,B1

B

A2,B2

B1,B2

A1,A2

A2⊕B1

B

A1,B1

A

A2,B2

B1,B2

A1,A2

B2⊕A1

B

A1,B1

B

A2,B2

B1,B2

A1,A2

B2⊕B1

⇒ Works for all possible user requests

⇒ Simultaneous coded multicasting gain

Proposed Coded Scheme
N = 2 files, K = 2 users, cache size M = 1

0

1

2

0 1 2

M

R

uncoded scheme

coded scheme

Proposed Coded Scheme
N = 3 files, K = 3 users, cache size M = 1

Proposed Coded Scheme
N = 3 files, K = 3 users, cache size M = 1

C
B
A

Proposed Coded Scheme
N = 3 files, K = 3 users, cache size M = 1

C1,C2,C3

B1,B2,B3

A1,A2,A3

Proposed Coded Scheme
N = 3 files, K = 3 users, cache size M = 1

A1,B1,C1 A2,B2,C2 A3,B3,C3

C1,C2,C3

B1,B2,B3

A1,A2,A3

Proposed Coded Scheme
N = 3 files, K = 3 users, cache size M = 1

A1,B1,C1 A2,B2,C2 A3,B3,C3

C1,C2,C3

B1,B2,B3

A1,A2,A3

Proposed Coded Scheme
N = 3 files, K = 3 users, cache size M = 1

A1,B1,C1 A2,B2,C2 A3,B3,C3

C1,C2,C3

B1,B2,B3

A1,A2,A3

Proposed Coded Scheme
N = 3 files, K = 3 users, cache size M = 1

A1,B1,C1 A2,B2,C2 A3,B3,C3

C1,C2,C3

B1,B2,B3

A1,A2,A3

A2 ⊕ B1

Proposed Coded Scheme
N = 3 files, K = 3 users, cache size M = 1

A1,B1,C1 A2,B2,C2 A3,B3,C3

C1,C2,C3

B1,B2,B3

A1,A2,A3

A2 ⊕ B1

Proposed Coded Scheme
N = 3 files, K = 3 users, cache size M = 1

A1,B1,C1 A2,B2,C2 A3,B3,C3

C1,C2,C3

B1,B2,B3

A1,A2,A3

A2 ⊕ B1,A3 ⊕ C1

Proposed Coded Scheme
N = 3 files, K = 3 users, cache size M = 1

A1,B1,C1 A2,B2,C2 A3,B3,C3

C1,C2,C3

B1,B2,B3

A1,A2,A3

A2 ⊕ B1,A3 ⊕ C1

Proposed Coded Scheme
N = 3 files, K = 3 users, cache size M = 1

A1,B1,C1 A2,B2,C2 A3,B3,C3

C1,C2,C3

B1,B2,B3

A1,A2,A3

A2 ⊕ B1,A3 ⊕ C1,B3 ⊕ C2

Proposed Coded Scheme
N = 3 files, K = 3 users, cache size M = 1

A

A1,B1,C1

B

A2,B2,C2

C

A3,B3,C3

C1,C2,C3

B1,B2,B3

A1,A2,A3

A2 ⊕ B1,A3 ⊕ C1,B3 ⊕ C2

Proposed Coded Scheme
N = 3 files, K = 3 users, cache size M = 1

A

A1,B1,C1

B

A2,B2,C2

C

A3,B3,C3

C1,C2,C3

B1,B2,B3

A1,A2,A3

A2 ⊕ B1,A3 ⊕ C1,B3 ⊕ C2

⇒ Coded multicast to 2 users with different demands

Proposed Coded Scheme
N = 3 files, K = 3 users, cache size M = 1

0

1

2

3

0 1 2 3

M

R

uncoded scheme

coded scheme

Proposed Coded Scheme
N = 3 files, K = 3 users, cache size M = 2

Proposed Coded Scheme
N = 3 files, K = 3 users, cache size M = 2

C
B
A

Proposed Coded Scheme
N = 3 files, K = 3 users, cache size M = 2

C12,C13,C23

B12,B13,B23

A12,A13,A23

Proposed Coded Scheme
N = 3 files, K = 3 users, cache size M = 2

A12,B12,C12

A13,B13,C13

A12,B12,C12

A23,B23,C23

A13,B13,C13

A23,B23,C23

C12,C13,C23

B12,B13,B23

A12,A13,A23

Proposed Coded Scheme
N = 3 files, K = 3 users, cache size M = 2

A12,B12,C12

A13,B13,C13

A12,B12,C12

A23,B23,C23

A13,B13,C13

A23,B23,C23

C12,C13,C23

B12,B13,B23

A12,A13,A23

Proposed Coded Scheme
N = 3 files, K = 3 users, cache size M = 2

A12,B12,C12

A13,B13,C13

A12,B12,C12

A23,B23,C23

A13,B13,C13

A23,B23,C23

C12,C13,C23

B12,B13,B23

A12,A13,A23

Proposed Coded Scheme
N = 3 files, K = 3 users, cache size M = 2

A12,B12,C12

A13,B13,C13

A12,B12,C12

A23,B23,C23

A13,B13,C13

A23,B23,C23

C12,C13,C23

B12,B13,B23

A12,A13,A23

A23 ⊕ B13 ⊕ C12

Proposed Coded Scheme
N = 3 files, K = 3 users, cache size M = 2

A

A12,B12,C12

A13,B13,C13

B

A12,B12,C12

A23,B23,C23

C

A13,B13,C13

A23,B23,C23

C12,C13,C23

B12,B13,B23

A12,A13,A23

A23 ⊕ B13 ⊕ C12

Proposed Coded Scheme
N = 3 files, K = 3 users, cache size M = 2

A

A12,B12,C12

A13,B13,C13

B

A12,B12,C12

A23,B23,C23

C

A13,B13,C13

A23,B23,C23

C12,C13,C23

B12,B13,B23

A12,A13,A23

A23 ⊕ B13 ⊕ C12

⇒ Coded multicast to 3 users with different demands

Proposed Coded Scheme
N = 3 files, K = 3 users, cache size M = 2

0

1

2

3

0 1 2 3

M

R

uncoded scheme

coded scheme

Proposed Coded Scheme
N = K files and users, cache size M

Goal: coded multicast to M + 1 users with different demands

Proposed Coded Scheme
N = K files and users, cache size M

Goal: coded multicast to M + 1 users with different demands

Need to place content such that in delivery phase:

1 for every possible user demands. . .

2 and for every possible subset S of M + 1 users. . .

3 and for every possible subset T ⊂ S of M users. . .

4 users in T share content that is required at the user in S \ T

b b b b b

S
T

Proposed Coded Scheme
N = K files and users, cache size M

Goal: coded multicast to M + 1 users with different demands

Need to place content such that in delivery phase:

1 for every possible user demands. . .

2 and for every possible subset S of M + 1 users. . .

3 and for every possible subset T ⊂ S of M users. . .

4 users in T share content that is required at the user in S \ T

Example: N = K = 3, M = 2

Every two users have a piece of content the remaining user needs

Proposed Coded Scheme
N = K files and users, cache size M

Placement phase:

Proposed Coded Scheme
N = K files and users, cache size M

Placement phase:

N files: W1, . . . ,WN

Proposed Coded Scheme
N = K files and users, cache size M

Placement phase:

N files: W1, . . . ,WN

Split each file into
(

K

M

)

parts

⇒ Wn =
(

Wn,T : T ⊂ [K], |T | = M
)

Proposed Coded Scheme
N = K files and users, cache size M

Placement phase:

N files: W1, . . . ,WN

Split each file into
(

K

M

)

parts

⇒ Wn =
(

Wn,T : T ⊂ [K], |T | = M
)

Cache k :
(

Wn,T : n ∈ [N], T ⊂ [K], |T | = M, k ∈ T
)

Proposed Coded Scheme
N = K files and users, cache size M

Placement phase:

N files: W1, . . . ,WN

Split each file into
(

K

M

)

parts

⇒ Wn =
(

Wn,T : T ⊂ [K], |T | = M
)

Cache k :
(

Wn,T : n ∈ [N], T ⊂ [K], |T | = M, k ∈ T
)

Example: N = K = 3, M = 2

Consider files A,B ,C ⇒ cache 2:
(

A12,A23,B12,B23,C12,C23

)

Proposed Coded Scheme
N = K files and users, cache size M

Delivery phase:

Proposed Coded Scheme
N = K files and users, cache size M

Delivery phase: Assume users k requests Wdk

Proposed Coded Scheme
N = K files and users, cache size M

Delivery phase: Assume users k requests Wdk

Send ⊕k∈SWdk ,S\{k} for all S ⊂ [K] such that |S| = M + 1

Proposed Coded Scheme
N = K files and users, cache size M

Delivery phase: Assume users k requests Wdk

Send ⊕k∈SWdk ,S\{k} for all S ⊂ [K] such that |S| = M + 1

Coded multicast to M + 1 users with different demands

Proposed Coded Scheme
N = K files and users, cache size M

Delivery phase: Assume users k requests Wdk

Send ⊕k∈SWdk ,S\{k} for all S ⊂ [K] such that |S| = M + 1

Coded multicast to M + 1 users with different demands

Example: N = K = 3, M = 1

Consider files A,B ,C and user requests d1 = A, d2 = B , d3 = C

⇒ Server sends A2 ⊕ B1, A3 ⊕ C1, B3 ⊕ C2

Comparison of the Two Schemes
N files, K users, cache size M

Uncoded scheme: R(M) = K · (1−M/N)

Coded scheme: R(M) = K · (1−M/N) · 1

1+KM/N

Comparison of the Two Schemes
N files, K users, cache size M

Uncoded scheme: R(M) = K · (1−M/N)

Coded scheme: R(M) = K · (1−M/N) · 1

1+KM/N

Rate without caching K

Comparison of the Two Schemes
N files, K users, cache size M

Uncoded scheme: R(M) = K · (1−M/N)

Coded scheme: R(M) = K · (1−M/N) · 1

1+KM/N

Rate without caching K

Local caching gain 1−M/N

Significant when local cache size M is of order N

Comparison of the Two Schemes
N files, K users, cache size M

Uncoded scheme: R(M) = K · (1−M/N)

Coded scheme: R(M) = K · (1−M/N) · 1

1+KM/N

Rate without caching K

Local caching gain 1−M/N

Significant when local cache size M is of order N

Global caching gain 1

1+KM/N

Significant when global cache size KM is of order N

Comparison of the Two Schemes
N files, K users, cache size M

Uncoded scheme: R(M) = K · (1−M/N)

Coded scheme: R(M) = K · (1−M/N) · 1

1+KM/N

Rate without caching K

Local caching gain 1−M/N

Significant when local cache size M is of order N

Global caching gain 1

1+KM/N

Significant when global cache size KM is of order N

⇒ Global gain can be Θ(K) smaller than local gain

Example
N = 30 files, K = 30 users, cache size M = 10

M

R

Example
N = 30 files, K = 30 users, cache size M = 10

M

R

Uncoded scheme:

R(M) = K · (1−M/N)

≈ 30 · 0.67 ≈ 20

Example
N = 30 files, K = 30 users, cache size M = 10

M

R

Uncoded scheme:

R(M) = K · (1−M/N)

≈ 30 · 0.67 ≈ 20

Coded scheme:

R(M) = K · (1−M/N)·
1

1 + KM/N

≈ 30 · 0.67 · 0.09 ≈ 1.8

Example
N = 30 files, K = 30 users, cache size M = 10

M

R

Uncoded scheme:

R(M) = K · (1−M/N)

≈ 30 · 0.67 ≈ 20

Coded scheme:

R(M) = K · (1−M/N)·
1

1 + KM/N

≈ 30 · 0.67 · 0.09 ≈ 1.8

⇒ Factor 11 reduction in rate!

Example
N = 30 files, K = 30 users, cache size M = 10

M

R

Uncoded scheme:

R(M) = K · (1−M/N)

≈ 30 · 0.67 ≈ 20

Coded scheme:

R(M) = K · (1−M/N)·
1

1 + KM/N

≈ 30 · 0.67 · 0.09 ≈ 1.8

⇒ Factor 11 reduction in rate!

⇒ Local gain is 0.67

Example
N = 30 files, K = 30 users, cache size M = 10

M

R

Uncoded scheme:

R(M) = K · (1−M/N)

≈ 30 · 0.67 ≈ 20

Coded scheme:

R(M) = K · (1−M/N)·
1

1 + KM/N

≈ 30 · 0.67 · 0.09 ≈ 1.8

⇒ Factor 11 reduction in rate!

⇒ Local gain is 0.67

⇒ Global gain is 0.09
(coded multicast to M + 1 = 11 users with different demands)

Can We Do Better?

Theorem

The coded scheme is optimal to within a constant factor in rate.3

3M. A. Maddah-Ali and U. Niesen, “Fundamental limits of caching,” IEEE

Trans. Inf. Theory, vol. 60, no. 5, pp. 2856–2867, May 2014.

Can We Do Better?

Theorem

The coded scheme is optimal to within a constant factor in rate.3

⇒ Information-theoretic bound

3M. A. Maddah-Ali and U. Niesen, “Fundamental limits of caching,” IEEE

Trans. Inf. Theory, vol. 60, no. 5, pp. 2856–2867, May 2014.

Can We Do Better?

Theorem

The coded scheme is optimal to within a constant factor in rate.3

⇒ Information-theoretic bound

⇒ Constant is independent of problem parameters N,K ,M

3M. A. Maddah-Ali and U. Niesen, “Fundamental limits of caching,” IEEE

Trans. Inf. Theory, vol. 60, no. 5, pp. 2856–2867, May 2014.

Can We Do Better?

Theorem

The coded scheme is optimal to within a constant factor in rate.3

⇒ Information-theoretic bound

⇒ Constant is independent of problem parameters N,K ,M

⇒ No other significant gain besides local and global

3M. A. Maddah-Ali and U. Niesen, “Fundamental limits of caching,” IEEE

Trans. Inf. Theory, vol. 60, no. 5, pp. 2856–2867, May 2014.

Approach Can be Adapted to Handle. . .

Asynchronous user requests4

Nonuniform file popularities5

Users joining and leaving the network6

Several users sharing a cache7

Online cache updates8

More complicated network topologies9

4Niesen and Maddah-Ali 2015.
5Niesen and Maddah-Ali 2017; Ji, Tulino, Llorca, and Caire 2017; Zhang,

Lin, and Wang 2018.
6Maddah-Ali and Niesen 2015.
7Hachem, Karamchandani, and Diggavi 2017.
8Pedarsani, Maddah-Ali, and Niesen 2016.
9Karamchandani, Niesen, Maddah-Ali, and Diggavi 2016; Ji, Caire, and

Molisch 2016.

Video Streaming Demo10

10U. Niesen and M. A. Maddah-Ali, “Coded caching for delay-sensitive

content,” in Proc. IEEE ICC, Jun. 2015, pp. 5559–5564.

Open Questions

File size scaling:

Open Questions

File size scaling:

Described approach requires file size scaling like
(

K

KM/N

)

Scales poorly with number of users K

Open Questions

File size scaling:

Described approach requires file size scaling like
(

K

KM/N

)

Scales poorly with number of users K

Promising recent results with interesting connection to graph
theory11, but scope for more work

11K. Shanmugam, A. M. Tulino, and A. G. Dimakis, “Coded caching with

linear subpacketization is possible using Rusza-Szemeredi graphs,” in Proc.

IEEE ISIT, Jun. 2017, pp. 2157–8117

Open Questions

File size scaling:

Described approach requires file size scaling like
(

K

KM/N

)

Scales poorly with number of users K

Promising recent results with interesting connection to graph
theory11, but scope for more work

State:

11K. Shanmugam, A. M. Tulino, and A. G. Dimakis, “Coded caching with

linear subpacketization is possible using Rusza-Szemeredi graphs,” in Proc.

IEEE ISIT, Jun. 2017, pp. 2157–8117

Open Questions

File size scaling:

Described approach requires file size scaling like
(

K

KM/N

)

Scales poorly with number of users K

Promising recent results with interesting connection to graph
theory11, but scope for more work

State:

Standard caching schemes only require knowledge of local state

In contrast coded caching requires the server to have
knowledge of global state

11K. Shanmugam, A. M. Tulino, and A. G. Dimakis, “Coded caching with

linear subpacketization is possible using Rusza-Szemeredi graphs,” in Proc.

IEEE ISIT, Jun. 2017, pp. 2157–8117

Open Questions

File size scaling:

Described approach requires file size scaling like
(

K

KM/N

)

Scales poorly with number of users K

Promising recent results with interesting connection to graph
theory11, but scope for more work

State:

Standard caching schemes only require knowledge of local state

In contrast coded caching requires the server to have
knowledge of global state

Large scale implementation:

11K. Shanmugam, A. M. Tulino, and A. G. Dimakis, “Coded caching with

linear subpacketization is possible using Rusza-Szemeredi graphs,” in Proc.

IEEE ISIT, Jun. 2017, pp. 2157–8117

Open Questions

File size scaling:

Described approach requires file size scaling like
(

K

KM/N

)

Scales poorly with number of users K

Promising recent results with interesting connection to graph
theory11, but scope for more work

State:

Standard caching schemes only require knowledge of local state

In contrast coded caching requires the server to have
knowledge of global state

Large scale implementation:

So far only demo-sized implementation

Experimentation with large-scale systems are needed

11K. Shanmugam, A. M. Tulino, and A. G. Dimakis, “Coded caching with

linear subpacketization is possible using Rusza-Szemeredi graphs,” in Proc.

IEEE ISIT, Jun. 2017, pp. 2157–8117

Conclusions
A New Approach to Caching

Conclusions
A New Approach to Caching

Main gain in caching is global

⇒ Coded multicast to users with different demands

Conclusions
A New Approach to Caching

Main gain in caching is global

⇒ Coded multicast to users with different demands

Global cache size matters

Conclusions
A New Approach to Caching

Main gain in caching is global

⇒ Coded multicast to users with different demands

Global cache size matters

Statistically identical users ⇒ different cache content

Conclusions
A New Approach to Caching

Main gain in caching is global

⇒ Coded multicast to users with different demands

Global cache size matters

Statistically identical users ⇒ different cache content

Significant improvement over uncoded caching schemes

⇒ Reduction in rate up to order of number of users

Conclusions
A New Approach to Caching

Main gain in caching is global

⇒ Coded multicast to users with different demands

Global cache size matters

Statistically identical users ⇒ different cache content

Significant improvement over uncoded caching schemes

⇒ Reduction in rate up to order of number of users

Key open questions: block length, state, large-scale
implementation

References I

Cisco, “The Zettabyte era: Trends and analysis,” Tech. Rep.,
Jun. 2017.

M. A. Maddah-Ali and U. Niesen, “Fundamental limits of
caching,” IEEE Trans. Inf. Theory, vol. 60, no. 5, pp. 2856–2867,
May 2014.

U. Niesen and M. A. Maddah-Ali, “Coded caching for
delay-sensitive content,” in Proc. IEEE ICC, Jun. 2015,
pp. 5559–5564.

——,“Coded caching with nonuniform demands,” IEEE Trans.
Inf. Theory, vol. 63, pp. 1146–1158, Feb. 2017.

M. Ji, A. M. Tulino, J. Llorca, and G. Caire, “Order-optimal rate
of caching and coded multicasting with random demands,” IEEE
Trans. Inf. Theory, vol. 63, pp. 3923–3949, Apr. 2017.

References II

J. Zhang, X. Lin, and X. Wang, “Coded caching under arbitrary
popularity distributions,” IEEE Trans. Inf. Theory, vol. 64,
pp. 98–107, Jan. 2018.

M. A. Maddah-Ali and U. Niesen, “Decentralized coded caching
attains order-optimal memory-rate tradeoff,” IEEE/ACM Trans.
Netw., vol. 23, pp. 1029–1040, Aug. 2015.

J. Hachem, N. Karamchandani, and S. Diggavi, “Coded caching
for multi-level popularity and access,” IEEE Trans. Inf. Theory,
vol. 63, pp. 3108–3141, May 2017.

R. Pedarsani, M. A. Maddah-Ali, and U. Niesen, “Online coded
caching,” IEEE/ACM Trans. Netw., vol. 24, pp. 836–845, Apr.
2016.

N. Karamchandani, U. Niesen, M. A. Maddah-Ali, and S. Diggavi,
“Hierarchical coded caching,” IEEE Trans. Inf. Theory, vol. 62,
pp. 3212–3229, Jun. 2016.

References III

M. Ji, G. Caire, and A. F. Molisch, “Fundamental limits of caching
in wireless D2D networks,” IEEE Trans. Inf. Theory, vol. 62, no.
2, pp. 849–869, Feb. 2016.

K. Shanmugam, A. M. Tulino, and A. G. Dimakis, “Coded caching
with linear subpacketization is possible using Rusza-Szemeredi
graphs,” in Proc. IEEE ISIT, Jun. 2017, pp. 2157–8117.

Can We Do Better?

cache 1

user 1

cache 2

user 2

cache 3

user 3

cache 4

user 4

Can We Do Better?

cache 1

user 1

cache 2

user 2

cache 3

user 3

cache 4

user 4

Can We Do Better?

cache 1

user 1

cache 2

user 2

cache 3

user 3

cache 4

user 4

Can We Do Better?

cache 1

user 1

cache 2

user 2

cache 3

user 3

cache 4

user 4

R + 4M ≥ 4 ⇒ R ≥ 4− 4M

Can We Do Better?

cache 1

user 1 user 1

cache 4

user 4 user 4

R + 4M ≥ 4 ⇒ R ≥ 4− 4M

Can We Do Better?

cache 1

user 1 user 1

cache 4

user 4 user 4

R + 4M ≥ 4 ⇒ R ≥ 4− 4M

Can We Do Better?

cache 1

user 1 user 1

cache 4

user 4 user 4

R + 4M ≥ 4 ⇒ R ≥ 4− 4M

Can We Do Better?

cache 1

user 1 user 1

cache 4

user 4 user 4

R + 4M ≥ 4 ⇒ R ≥ 4− 4M
2R + 2M ≥ 4 ⇒ R ≥ 2−M

Can We Do Better?

cache 1

user 1 user 1

user 1 user 1

R + 4M ≥ 4 ⇒ R ≥ 4− 4M
2R + 2M ≥ 4 ⇒ R ≥ 2−M

Can We Do Better?

cache 1

user 1 user 1

user 1 user 1

R + 4M ≥ 4 ⇒ R ≥ 4− 4M
2R + 2M ≥ 4 ⇒ R ≥ 2−M

Can We Do Better?

cache 1

user 1 user 1

user 1 user 1

R + 4M ≥ 4 ⇒ R ≥ 4− 4M
2R + 2M ≥ 4 ⇒ R ≥ 2−M

Can We Do Better?

cache 1

user 1 user 1

user 1 user 1

R + 4M ≥ 4 ⇒ R ≥ 4− 4M
2R + 2M ≥ 4 ⇒ R ≥ 2−M
4R +M ≥ 4 ⇒ R ≥ 1−M/4

Can We Do Better?

This can be rewritten as

R ≥ max
{

4− 4M, 2−M, 1−M/4
}

Can We Do Better?

This can be rewritten as

R ≥ max
{

4− 4M, 2−M, 1−M/4
}

For general N and K

R ≥ max
s

(

s −
s

⌊N/s⌋
M

)

Comparing with achievable rate yields the theorem

