

Personalized Mobile Application Discovery

Bo Yan and Guanling Chen

Department of Computer Science University of Massachusetts Lowell

How to Find Apps

- Search by keywords or browse by categories
- Personalized recommendation according to user download history or ratings
 - Users often install apps to try them out without uninstalling when dislike them
 - Lack of ratings
 - Angry Birds, ratings from 7% downloads
 - Outdated ratings for continuously updated apps

АррЈоу

- Usage Score
 - Implicitly measure how the apps are used by users without requiring explicit ratings
 - Adaptive to the changes of user taste
- Collaborative Filtering
 - Compute similarity by usage score
 - Predict user preference from the similar apps of user's installation

Talk Outline

- Recommendation
- Implementation
- Evaluation Results
- Conclusion and Future Works

How to Describe User Preference

- Passively observe how the apps are being used
 - The more an app being used the more the user likes it
 - The usage patterns of the different apps thus can be considered as an objective reflection of the user's taste
- Usage Score
 - Recency, Frequency and Duration
 - The weight shows the importance

 $v_{u\vdash p} = w_R v_R + w_F v_F + w_D v_D$

Adaptiveness

- Recency is adaptive to the changes of usage
- Give frequency and duration a penalty according to recency

Slope One Prediction

- Similarity $dev_{j,i} = \sum_{w \in S_{j,i}} \frac{v_{w \vdash j} - v_{w \vdash i}}{card(S_{j,i})} \xrightarrow{\text{Mike} \ 2 \ \text{unrated}}{\text{Stephen} \ 4 \ 6}$
- Predict the usage score reflecting how the user like an app

$$P_w(u_j) = \frac{\sum_{i \in R_{u,j}} (dev_{j,i} + u_i) card(S_{j,i})}{\sum_{i \in R_{u,j}} card(S_{j,i})}$$

Talk Outline

- Recommendation
- Implementation
- Evaluation Results
- Conclusion and Future Works

Challenges

- How to measure app usage since there is no API provided by Android SDK
- Usability
 Considerations
- How to identify users

Monitoring App Usage

- No API to acquire app usage
 - Check every one second which app's activity is in the foreground
- Services are always running
 - Focus on interaction time
- Run a service in the background to do this monitoring

Usability Considerations

- Slow to load
 - Provide a sense of immediacy
 - Retrieve the list of recommended apps in a background thread
 - Download the icons of apps using a thread pool
 - The perceived wait time is shorten
- Difficult to read and use
 - Bigger fonts and larger areas

Cookie-based User Auth

- Anonymously usage records
 - Need to identify usage records for personalized recommendation
- Cookie-based Authentication
 - Identify users by device
 - Merge the device identifier and the server token into Cookie

Talk Outline

- Recommendation
- Implementation
- Evaluation Results
- Conclusion and Future Works

AppJoy Characteristics

- Release since February 2010
- More than 4,600 users from 10,190 cities in 99 countries
- More than 100 types of smartphones
- 50% of users stayed with AppJoy 10+ days
- A relatively stable organic growth without any advertisement

Usage Report

- Installed apps, from 3 to 910 (61)
 - frequently-used apps, from 1 to 73 (8)
- 40% of users installed less than 18 of the total 42 categories
 - Exploratory users installed more apps in each category
- 753 users used AppJoy for 30+ days
 - 50% of apps are installed for 11 days
 - 27% of apps are installed for 30 days

Recommendation Effectiveness

4.96% of all recommended apps are installed
7.39% of users installed more than 10

Recommendation Accuracy

- Can be improved, RMSE = 0.9749
 - Netflix Cinematch, 0.9514
 - Bellkor's Progmatic Chaos, 0.8554
- However, more than 80% accuracy for more than 80% of the users

Recommendations is More Popular

- 2,603 users (v2 and v3)
 - <u>597 apps</u> installed through AppJoy
 - 14,330 apps not installed through AppJoy

Meeting Users' Needs

- 597 recommended apps
 - <u>839 users</u> installed them through AppJoy
 - 1496 users installed them not through AppJoy

More Interaction Time

- 839 users who installed recommended apps through AppJoy
 - interacted more with recommended apps

Talk Outline

- Recommendation
- Implementation
- Evaluation Results
- Conclusion and Future Works

Discussion

- iPhone or Windows Mobile
- Context-aware recommendation
- The little-changed recommendations from relatively stable usage pattern
- Usage record filter against malicious attackers with huge faked usage patterns

Conclusion

- АррЈоу
 - Use collaborative filtering to make personalized mobile application recommendation based on the user's actual usage pattern
 - Completely automatic without requiring manual input
 - Adaptive to the potential changes of the user's application taste
 - Accurate by consuming low battery

Future Work

- Usability and user study
- Improve recommendation algorithm
 - Integrate the user context
- Perform detailed analysis of app usage pattern at a much larger scale
- Promotion

Questions and Answers

http://appjoy.cs.uml.edu

