High-Fidelity Application-Centric Evaluation Framework for Vehicular Networks

Yi Yang, Maneesh Varshney, Shrinivas Mohan, Rajive Bagrodia
Mobile Systems Lab
Computer Science Department, UCLA

This work is supported by
US Army Research Office grant DAWN
National Science Foundation NRT grant WHYNET
Desired Capabilities of Evaluation Technique (I)

- **Realism**: capability of
 - running operational softwares
 - real applications, protocol implementations
 - setting up close to reality physical environment
 - distribution of roadside units and vehicles, mobility, wireless channel

```
simulation  emulation  physical testbed
```

realism
Desired Capabilities of Evaluation Technique (II)

- **Flexibility**: easiness and cost to
 - realize various scenarios
 - normal day-to-day operation, congestion, failure, emergency
 - evaluate application and protocol at different stages
 - algorithm design, prototype, deployment
Comparison of Evaluation Techniques

- **physical testbed**
- **emulation**
- **simulation**

- **realism**
- **cost**
- **flexibility**
Related Work

• Physical testbeds
 • Drive-Thru (TZI), CalTel (MIT), [Wu,VANET’05] (Gatech), InMotion (Intel Research Cambridge), FleetNet (IBR)

• Simulators
 • GrooveSim (CMU), ns-2 (ISI), QualNet (SNT)
Our Approach

Hybrid emulation testbed TWINE

- Run real application
- Simulate or Emulate protocol stack
- Simulate physical environment
 - Incorporate real deployment data of roadside APs, vehicle mobility traces
WHYNET Testbed: TWINE System Architecture

[Zhou et al, Infocom’06]
Use Case

- Execute real applications by emulating end hosts
- Model large scale vehicular networks by simulation
- Run prototype/deployment by having emulated or physical subnets
Realistic Physical Environment

• Represent realistic vehicle mobility
 • Vehicle movement traces
 • e.g. 24-hour movement pattern of a total number of 259,978 vehicles in Switzerland (area of 41,559 km²)
 [lst.inf.ethz.ch/ad-hoc/car-traces]

• Represent realistic vehicular network topology
 • Road maps [map.search.ch/index.en.html]
 • GPS coordinates of currently deployed APs [www.jiwire.com], [www.wifimaps.com]

• Represent wireless channel effects
 • e.g. multi-path fast fading in urban environment, impact of vehicle speed on channel
Our Approach

Hybrid emulation testbed TWINE

- Run real application
- Simulate or Emulate protocol stack
- Simulate physical environment
 - Incorporate real deployment data of roadside APs, vehicle mobility traces

Application-Centric Evaluation
Measure PSNR of Streaming Video

- Peak Signal to Noise Ratio (PSNR)

\[
PSNR = \frac{\text{max. power of a video signal}}{\text{power of corrupting noise}}
\]

Simulated multi-hop vehicular network

Original video clip → Displayed video clip

Emulated end host

Original

Displayed

VirtualDub

Wavelet

PSNR
Experiment Setup

- Examine PSNR of video streaming application
 - Video streaming application: VLC
 - Network-layer routing protocols: AODV and GPSR
 - MAC/PHY rate adaptation: fixed rate (11 Mbps) and Auto Rate Fallback (ARF)

Experiment parameters

<table>
<thead>
<tr>
<th>Vehicular Network Environment Parameters</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Vehicle topology (mxm)</td>
<td>10x2000</td>
</tr>
<tr>
<td>Vehicle density (nodes/area)</td>
<td>23, 45, 91</td>
</tr>
<tr>
<td>Vehicle average speed (m/s)</td>
<td>30</td>
</tr>
<tr>
<td>Vehicle relative speed (m/s)</td>
<td>0 - 6</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Workload Parameters</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Video rate (Kbps)</td>
<td>56, 112, 256</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Channel Fading Parameters</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Fading model</td>
<td>no fading, Rayleigh</td>
</tr>
<tr>
<td>Max fading velocity (m/s)</td>
<td>15, 30, 60</td>
</tr>
</tbody>
</table>
Direct & Reliable Application Performance Results

- Difficult to correlate perceived video quality with throughput, delay, jitter and loss
- Hard to discriminate performance difference between AODV and GPSR

- Better video quality at high PSNR
- AODV outperforms GPSR

100dB, no distortion

PSNR: AODV PSNR: GPSR

AODV vs. GPSR: network-level performance
New Insights into Cross-layer Interaction (I)

AODV: PSNR at different video rates w/ and w/o ARF

- Application requirements play a role in determining how the use of rate adaptation affects performance of routing protocols
- Performance of AODV improved by ARF at video rates 56 and 112Kbps
- At high video rate 256Kbps, ARF decrease performance of AODV
AODV: throughput and loss w/ and w/o ARF

- Application awareness is important in determining rate adaptation strategy
- Random loss by the use of ARF reduces application-level performance of AODV
GPSR: PSNR at different video rates w/ and w/o ARF

- Performance of rate adaptation is influenced by mix of application requirements and operation details of routing protocol
- Routing and rate adaptation should share information
Impact of vehicle density on application-level performance depends on the specific choice of routing protocol.

- Little impact on AODV
- GPSR performance decreases significantly as density grows
- Choosing stable links exhibits high resilience to density variation

Impact of Physical Environment

PSNR of AODV and GPSR at different vehicle densities
Conclusions

• Propose high-fidelity application-centric evaluation framework for vehicular networks
 • Contain high realism and flexibility
 • Enable application-centric evaluation
• Demonstrate benefits of evaluation framework by measuring PSNR of video streaming
 • Produce direct and reliable application performance results
 • Provide new insights into cross-layer interaction
Ongoing Work

- Integrate transportation simulator with network simulator
 - Provide close-loop interaction between transportation and network simulation
- Realistically represent radio and wireless channel in vehicular networks
- Include vehicular network specific applications, network architectures and protocols
Thank You!

Questions or Comments?