Data Aggregation and Roadside Unit Placement for a VANET Traffic Information System

Christian Lochert*, Björn Scheuermann*, Christian Wewetzer◊, Andreas Luebke◊, and Martin Mauve*

*Heinrich Heine University Düsseldorf, Germany
◊Volkswagen Group, Wolfsburg, Germany

September, 15th 2008
San Francisco, CA, USA
Global Targets

Develop a navigation system based on current traffic information

Steps to proceed:
1. Identify a suitable metric
2. Develop an aggregation scheme based on frequently updated floating data
3. Identify possible locations for supporting units
Global Targets

Develop a navigation system based on current traffic information

Steps to proceed:

1. Identify a suitable metric
2. Develop an aggregation scheme based on frequently updated floating data
3. Identify possible locations for supporting units
Cars gather information by making observations about the time to pass a road segment.
Assumptions

Cars gather information by making observations about the time to pass a road segment.
Cars gather information by making observations about the time to pass a road segment.
Assumptions

Cars gather information by making observations about the time to pass a road segment.
The Need for an Aggregation Scheme

Quantity of information
Information increases quadratically with the distance

Bandwidth
Packets can transport a limited amount of data only
Network capacity has to be considered
Implementation

Multi level aggregation:

1. **Hierarchical aggregation**
 - Cars have detailed knowledge about closer vicinity
 - Cars have rough insight in regions far away

2. **Aggregation based on the landmark principle**

 Aggregation of street segments between two landmarks of the same hierarchy
Landmark Aggregation
Landmark Aggregation

![Diagram of Landmark Aggregation](image)

The diagram illustrates the concept of Landmark Aggregation, showing how data is aggregated at various landmarks and points in time.
Landmark Aggregation
Hierarchical Aggregation
Hierarchical Aggregation
Characteristics of a VANET

- Only few vehicles are equipped with VANET technology (especially during roll-out)
- Equipment density of VANET technology is very low
- Network of equipped cars is partitioned into multiple parts

⇒ Supporting units
Functionality

- Behave like stationary cars
- Receive information by passing cars
- Supporting units are linked
- Share a common knowledge base
- Broadcast common knowledge
Supporting Units

Placement

- Where to place supporting units?
- How many units are needed?
- How to test the effects of positions?
Scenario
Motivation and Prerequisites

The Aggregation Approach

Supporting Units

Genetic Algorithm

Evaluation

Summary

Placement

Scenario

C. Lochert, B. Scheuermann, C. Wewetzer, A. Luebke, and M. Mauve

Data Aggregation and Roadside Unit Placement for a VANET Traffic Information System
Preparations for Evaluation

- Identify 100 possible locations for supporting units
- Vary the number of supporting units
- Test different subsets of these variations
Random Placement of Supporting Units

Placement

C. Lochert, B. Scheuermann, C. Wewetzer, A. Luebke, and M. Mauve

Data Aggregation and Roadside Unit Placement for a VANET Traffic Information System
Hard optimization problem

Range of possible placements is huge:

- With 10 active supporting units: $1.73 \cdot 10^{13}$
- With 30 active supporting units: $2.9 \cdot 10^{25}$
- Fast optimization is needed!
Hard optimization problem

Range of possible placements is huge:
- With 10 active supporting units: $1.73 \cdot 10^{13}$
- With 30 active supporting units: $2.9 \cdot 10^{25}$
- Fast optimization is needed!

⇒ Genetic Algorithms
Genetic Algorithm

Solving the optimization problem by using genetic algorithms

- Representation of possible SU locations with 4 active SUs

<table>
<thead>
<tr>
<th>SU-vector</th>
<th>SU_0</th>
<th>SU_1</th>
<th>SU_2</th>
<th>SU_3</th>
<th>SU_4</th>
<th>SU_5</th>
<th>SU_6</th>
<th>SU_7</th>
<th>SU_8</th>
<th>SU_9</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>B</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>C</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

- Fitness calculation and selection for recombination

<table>
<thead>
<tr>
<th>SU-vector</th>
<th>Fitness</th>
<th>Rank</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0.3</td>
<td>3.</td>
</tr>
<tr>
<td>B</td>
<td>2.5</td>
<td>1.</td>
</tr>
<tr>
<td>C</td>
<td>1.2</td>
<td>2.</td>
</tr>
</tbody>
</table>
Genetic Algorithm

Solving the optimization problem by using genetic algorithms

- Representation of possible SU locations with 4 active SUs

<table>
<thead>
<tr>
<th>SU-vector</th>
<th>SU₀</th>
<th>SU₁</th>
<th>SU₂</th>
<th>SU₃</th>
<th>SU₄</th>
<th>SU₅</th>
<th>SU₆</th>
<th>SU₇</th>
<th>SU₈</th>
<th>SU₉</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>B</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>C</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

- Fitness calculation and selection for recombination

<table>
<thead>
<tr>
<th>SU-vector</th>
<th>Fitness</th>
<th>Rank</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0.3</td>
<td>3.</td>
</tr>
<tr>
<td>B</td>
<td>2.5</td>
<td>1.</td>
</tr>
<tr>
<td>C</td>
<td>1.2</td>
<td>2.</td>
</tr>
</tbody>
</table>
Expected Results

- Low equipment ratio (5%) reduces accuracy
- Important information is gathered primarily in the city center
- A small number of SUs provides a significant benefit

⇒ Comparison between:
 - Journey time without traffic information
 - Journey time with disseminated traffic information

⇒ Benefit is the objective function for the genetic algorithm
Location of ten active SUs
Location of thirty active SUs
Effects of Supporting Units

![Graph showing the effects of supporting units on relative travel time. The graph compares static and dynamic routes with varying numbers of supporting units.]

C. Lochert, B. Scheuermann, C. Wewetzer, A. Luebke, and M. Mauve

Data Aggregation and Roadside Unit Placement for a VANET Traffic Information System
Results

Effects of Supporting Units (CDF)

C. Lochert, B. Scheuermann, C. Wewetzer, A. Luebke, and M. Mauve

Data Aggregation and Roadside Unit Placement for a VANET Traffic Information System
Effects of Supporting Units (CDF)

Fraction of nodes

Relative travel time (CDF)

100 SU
30 SU
10 SU
5 SU
0 SU
Summary

Analysis of an navigation system

- Development of an aggregation scheme for 2D traffic information data based on
 - Hierarchical aggregation
 - Landmark routing

- Generation of a Genetic Algorithm to evaluate
 - The number of supporting units
 - The placement of supporting units
Thank you for your attention!

Questions?

lochert@cs.uni-duesseldorf.de
Example Car

Std journey time: 725.65 s
Aggr journey time: 586.00 s
Global journey time: 586.00 s

Journey time savings: −139.65 s (0.81)
Example Car

C. Lochert, B. Scheuermann, C. Wewetzer, A. Luebke, and M. Mauve

Data Aggregation and Roadside Unit Placement for a VANET Traffic Information System
Evolution of SU vector with 30 active SUs
Evolution of SU vector with 10 active SUs
Toolchain

ns-2 \rightarrow VISSIM

movement + traffic log file

random initial SU vectors

individual SU vector

application simulator

geneic algorithm

optimal SU vector

time savings (fitness)