MobiSys 2004: Second International Conference on Mobile Systems, Applications, and Services, June, 2004, Boston, USA
  MobiSys Home   Organizers   Invitation   Tech Session   Registration  
  Workshops   Poster/Demo/Video   Authors/Speakers   Hotel/Travel   Invitation to Student Volunteer Program  

Impact of Radio Irregularity on Wireless Sensor Networks

Gang Zhou, Tian He, Sudha Krishnamurthy, and John A. Stankovic, University of Virginia

In this paper, we investigate the impact of radio irregularity on the communication performance in wireless sensor networks. Radio irregularity is a common phenomenon which arises from multiple factors, such as variance in RF sending power and different path losses depending on the direction of propagation. From our experiments, we discover that the variance in received signal strength is largely random; however, it exhibits a continuous change with incremental changes in direction. With empirical data obtained from the MICA2 platform, we establish a radio model for simulation, called the Radio Irregularity Model (RIM). This model is the first to bridge the discrepancy between spherical radio models used by simulators and the physical reality of radio signals. With this model, we are able to analyze the impact of radio irregularity on some of the well-known MAC and routing protocols. Our results show that radio irregularity has a significant impact on routing protocols, but a relatively small impact on MAC protocols. Finally, we propose six solutions to deal with radio irregularity. We evaluate two of them in detail. The results obtained from both the simulation and a running testbed demonstrate that our solutions greatly improve communication performance in the presence of radio irregularity.